REVIEW

Phylogeny and evolution of chemical communication:
an endocrine approach

A M Stoka

Centro Regional de Investigaciones Científicas y Tecnológicas (CRICYT) Mendoza, Argentina
Delegación Sanitaria Federal, Ministerio de Salud y Acción Social, Mendoza, Argentina
Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina

(Requests for offprints should be addressed to A M Stoka at J B Justo 370, piso 2, dto 22, 5500 Mendoza, Argentina)

ABSTRACT

The present review assesses the phylogenetic history of information molecules (bioregulators pheromones, hormones, neuroactive compounds), receptors, transducers, second messengers) in uni- and multicellular organisms.

Transitional stages between contemporary endocrine secretions including hormones and neuroactive materials, and primogenial exocrine compounds (pheromones) are proposed. Several hypotheses have been developed to explain the origin and evolution of bioregulator/receptor units.

Finally, how these primordial information molecules have either been co-opted or have changed their function during the course of biological evolution is analysed.

Journal of Molecular Endocrinology (1999) 22, 207–225

INTRODUCTION

Successful biological evolution may be considered to have, in large part, resulted from chemical communication using messengers such as food signals and toxins; these may be regarded as the primary conduits for information in the biosphere. The emergence of multicellular organisms, such as vertebrates, necessitates the differentiation and specialization of multiple chemical signalling systems organized in a network to carry the diffusible signal from one cell to the other (Fig. 1) either between or within several compartments.

The existence of an endocrine system as such conceptually demands multicellularity, but the actions of bioregulators are not restricted to the classical concept of hormones as endocrine signals. The tenor that ‘compounds secreted by endocrine structures (glandular or nervous cells) and transported to other parts of the body by way of the blood-stream (or other fluids), where they evoke physiological responses’ no longer applies.

Indeed, many bioregulators such as pheromones, paracrine substances, and growth factors do not originate from defined glandular or nervous structures and are delivered to their sites of action in many ways (Fig. 1). Chemical communication is central to evolutionary history; many types of information molecules including bioregulators, receptors, transducers, effectors and second messengers are almost universally present. Uni- and multicellular organisms are likely to share biosynthetic and functional mechanisms in terms of their chemical communication.

The use of phylogenetic perspectives to reconstruct evolutionary history has become increasingly important and provides solutions to basic questions in the area of chemical communications. Bio-regulators, secretory cells and target tissues have left no palaeontological record, but the evolution of chemical communication can be extrapolated from comparative analyses of extant organisms.

In addition, the living record is of course far richer and more extensive than the fossil one, because cells today retain important information about their past in terms of amino acid sequences of their proteins and in the composition of nucleic acids (RNA, DNA).
Thus, a phylogenetic analysis of the distribution, biological functions and mechanisms of action of informational molecules is a logical way to gain insight into evolutionary trends and history.

INTRASPECIFIC COMMUNICATION

The ubiquity of bioregulators throughout the biosphere suggests that these compounds predate truly hormonal roles, and chemical communication took place among unicellular organisms prior to the emergence of Metazoa.

Two primary secretory systems may be recognised depending on the routes they take following release. One type involves the synthesis and release of materials which have actions within the organism itself (contemporary endocrine system). The second type of secretion includes pheromonal systems in which the secretion leaves the organism, either as liquid or gas, to affect the function of a second organism (primordial exocrine system).

The variety and ubiquity of pheromonal molecules (cyclic nucleotide, amino acids, small peptides, large proteins, alkanes, ketones, terpenoids, steroids; Table 1, Fig. 2) renders it likely that such substances in unicellular organisms evolved into the hormones of multicellular organisms.

The earliest phylogenetic example of intraspecific communication at cellular organization level is the aggregation process (Bonner 1971, Schapp 1984) of unicellular organisms of the same species in which there is directed migration towards a region of higher concentration of pheromone (paracrine signal) (Table 1).

In addition, some pheromones are produced in the same cell in which they exert their effects, referred as to an autocrine signal; this type of self-stimulation is seen in the protozoan *Euplotes raikovi* (Vallesi et al. 1995). There are two kinds of pheromone–receptor interactions in this species: (i) autocrine pheromone receptors (cell division) and (ii) paracrine pheromone receptors (mating behaviour). In the first type of interaction the pheromones cause mitogenic proliferation of the same cells from which they were secreted. In the second type of interaction these cells interrupt their vegetative cycle and are triggered towards mating behaviour when non-self co-specific pheromones act on paracrine pheromone receptors.

There are broad paradigms for the evolution of the chemical communication involved in these biological responses: (i) the same information molecule can develop more than one physiological function; (ii) the autocrine and paracrine functions appeared prior to the origin of endocrine function; (iii) reciprocal interaction between members of the same species began in an asocial environment (without colonies and without co-operative interactions) preceding the development of multicellular organisms.

Chemical communication ranges from prokaryotes responding to a wide variety of environmental chemical signals to the complex endocrine regulatory processes in multicellular organisms. Certainly, the ubiquity of the vertebrate information molecules (Table 2) is a product of natural selection–adaptation events.

It is, however, important to distinguish between characteristics selected for one function (adaptation process) from those originally selected for one function but subsequently employed by chance in an extension of the initial function (exaptation process) (Gould & Vrba 1982).

A particularly good example of this is seen in invertebrate and vertebrate metamorphoses, spectacular biological processes regulated by a variety of hormones (Bentley 1976, Stoka 1987). In this process, juvenile hormone (sesquiterpenoid, *Insecta*) and prolactin (polypeptide, *Amphibia*) act as juvenile agents, although they are also involved in reproductive functions (Bern & Nicoll 1969, Highnam & Hill 1977). The ancestral insects and amphibians were essentially aquatic, metamorphosis...
TABLE 1. Ubiquity and chemical diversity of pheromones

<table>
<thead>
<tr>
<th>Organism</th>
<th>Effect</th>
<th>Chemical diversity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volvox carteri</td>
<td>Cellular differentiation</td>
<td>Glycoprotein</td>
<td>Starr & Jaenicke (1974)</td>
</tr>
<tr>
<td>Ectocarpus siliculosis</td>
<td>Sexual attraction</td>
<td>Ectocarpen (Fig. 2)</td>
<td>Müller et al. (1971)</td>
</tr>
<tr>
<td>Fucus serratus</td>
<td>Sexual attraction</td>
<td>Fucoserraten (Fig. 2)</td>
<td>Müller & Jaenicke (1973)</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyostelium lacteum</td>
<td>Aggregation</td>
<td>Pteridine derivative</td>
<td>Van Haastert et al. (1982)</td>
</tr>
<tr>
<td>Polysphondilium violaceum</td>
<td>Aggregation</td>
<td>Glorin (Fig. 2)</td>
<td>Shimomura et al. (1982)</td>
</tr>
<tr>
<td>Allomyces sp</td>
<td>Sexual attraction</td>
<td>Sirenin (Fig. 2)</td>
<td>Machlis et al. (1968)</td>
</tr>
<tr>
<td>Achlya bisexualis</td>
<td>Cellular differentiation and sexual attraction</td>
<td>Antheridiol (Fig. 2)</td>
<td>Barksdale (1967)</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>Idem</td>
<td>Oogoniol (Fig. 2)</td>
<td>McMorris et al. (1975)</td>
</tr>
<tr>
<td>Mucor mucedo</td>
<td>Idem</td>
<td>Alpha and a factors (Fig. 2)</td>
<td>Wilkinson & Pringle (1974);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trisporic acid (Fig. 2)</td>
<td>Duntze et al. (1970);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Meselson & Radding (1975)</td>
</tr>
<tr>
<td>Protozoans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euplotes raikovi</td>
<td>Cell division and mating behaviour</td>
<td>Polypeptides</td>
<td>Vallesi et al. (1995)</td>
</tr>
<tr>
<td>Arthropods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombyx mori (Insects)</td>
<td>Sexual attraction</td>
<td>Bombycol (Fig. 2)</td>
<td>Butenandt (1963)</td>
</tr>
<tr>
<td>Apis mellifera (Insects)</td>
<td>Sexual attraction</td>
<td>9-oxo-decenoic acid (Fig. 2)</td>
<td>Butler (1967)</td>
</tr>
<tr>
<td>Balanus balanoides (Crustaceans)</td>
<td>Aggregation</td>
<td>Protein</td>
<td>Crisp & Meadows (1962)</td>
</tr>
<tr>
<td>Fishes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carassius auratus (goldfish)</td>
<td>Sexual behaviour</td>
<td>17,20 β-dihydroxy-4-pregnene-3-one</td>
<td>Dulka et al. (1987)</td>
</tr>
<tr>
<td>Fugu niphobles</td>
<td>Sexual attraction</td>
<td>Tetrodotoxin</td>
<td>Matsumara (1995)</td>
</tr>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynops pyrrhogaster</td>
<td>Sexual attraction</td>
<td>Sodefrin (Fig. 2)</td>
<td>Kikuyama et al. (1995)</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thamnophis sirtalis parietalis</td>
<td>Sexual attraction</td>
<td>Long chain C_{29}-C_{37} unsaturated methyl ketones</td>
<td>Mason et al. (1989)</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>Sexual attraction</td>
<td>Androgen steroids</td>
<td>Melrose et al. (1971)</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>Sexual behaviour</td>
<td>Androstenol (steroid)</td>
<td>Gustavson et al. (1987)</td>
</tr>
</tbody>
</table>
being an adaptation process to permit aquatic and terrestrial life styles (Toms 1984).

Can the primordial functions of juvenile hormone and prolactin be identified?

Insect metamorphosis is linked to sexual maturation and the primordial function of juvenile hormone was probably to regulate the reproductive cycle of the ametabolous ancestors (Apterygota) of winged insects. The most primitive contemporary insects, Apterygota, display virtually no metamorphosis and juvenile hormone acts only on reproductive tissues.

In contrast, prolactin may be seen as an osmoregulatory hormone in fish. Thus, the morphogenetic and regulatory effects of the juvenile hormone and the later physiological attributes of prolactin (milk secretion in mammals, crop-milk production in birds, water-drive behaviour in amphibians) are secondarily evolved, when juvenile hormone and prolactin were used by other tissues or species.

The acquisition of new advantageous functions by a determined bioregulator might be an opportunistic process in which novel structures (receptors, transducers, effectors) and new domains of an old bioregulator developed new physiological functions in other tissues and/or species. This kind of evolutionary opportunism characterizes the phylogeny of chemical communication (exaptation process).

INTERSPECIFIC COMMUNICATION

Evolutionary opportunism is commonly seen in the interactions between hosts and parasites. Examination of these relationships reveals that in some cases there are indeed effects on the hormonal regulation of development. Several studies (Table 3) described cellular receptors of host hormones in parasites which can respond differently with respect to their hosts (heterotrophic effects).

With respect to the effect of host hormones on parasites (Table 3) there is evidence for the hypothesis that some bioregulators originally served...
as a defence molecule: (i) vertebrate-type steroid hormones are present in insects (Schildknecht et al. 1966, 1967) and steroid derivatives occur in coelenterates (Sturaro et al. 1982), and they act as defence mediators towards other species; (ii) sterols and steroids have antimicrobial effects (Buettow & Levedahl 1964); (iii) host hormones can inhibit the growth of parasites (Loose et al. 1983, Schar et al. 1986, Stoka 1996); (iv) several phytochemicals disrupt insect development (Stoka et al. 1987a).

Examples of transitional stages in the evolution of defensive and hormonal functions may also be noted: (i) a neurotoxin is a male attractant pheromone in vertebrates (Matsumara 1995); (ii) enterotoxins induce steroidogenesis in adrenocortical cells (Donta & Moon 1974); (iii) cholera toxin β-chain and vertebrate glycoprotein hormones (thyroid-stimulating hormone, luteinizing hormone, follicle-stimulating hormone) share structural similarities (Kurosky et al. 1977); (iv) the finding of chemical signalling systems in plants that play dual roles as growth regulators and as a defence mechanism against pathogens (Chang et al. 1993, Chen et al. 1993). Heterotrophic effects can also be viewed as (i) an adaptive strategy of parasites that renders it advantageous to co-ordinate their physiological functions with the physiological stage of their host. For example, 20-OH-ecdysone acts as a moulting hormone in insects, but can also stimulate growth and sexual differentiation in the protozoan parasite Trichonympha sp. (Cleveland 1959); (ii) a mechanism for pre-existing hormones to evolve in other target tissues or species (exaptation process). In unicellular organisms vertebrate-type bioregulators affect their growth (Table 3), while in multicellular organisms they are involved in sexual activity and metamorphosis (Baulieu et al. 1978, Geuns 1978, Stoka 1987, Stoka et al. 1987b). It is likely that receptors originally triggered one physiological response after interacting with a specific bioregulator, but subsequent changes (e.g. coupling with different transducers and effectors) allowed the development of additional physiological responses. This adaptive acquisition, with an old bioregulator playing a new function, is perhaps the most important consequence of transitional stages of change.

EVOLUTIONARY ASPECTS OF EXOCRINE AND ENDOCRINE SYSTEMS

Transitional stages are, phylogenetically, key points during the divergent evolution of uni- and multicellular organisms. In an evolutionary sense primitive pheromones are a transitional stage between the most primitive (food signals, toxins) and the most advanced (hormones, neuroactive compounds) chemical signals.

Current data are in agreement with the hypothesis that pheromones are ancestors of present-day hormones and that they arose very early during the evolutionary history as local cellular signals in unicellular organisms (primordial exocrine system).

Essentially, these bioregulators act as autocrine and paracrine factors (Vallesi et al. 1995). For example, cAMP regulates the metabolism of prokaryotes (autocrine action) (Mackman & Sutherland 1965), and regulates many activities in unicellular eukaryotes (paracrine action) (Schapp 1984). Moreover, cAMP plays a dual role as intra- and intercellular messenger in Dictyostelium discoideum (Gerish 1987).

What are the origins of this dual role of cAMP?

If a bioregulator acts as inter- and intracellular messenger receptor transformations must be involved. For instance, the action of cAMP as second messenger suggests that an internalization process takes place, because in Escherichia coli cAMP is produced in the same cell in which it exerts its effects (autocrine action) and forms a complex with an extracellular specific protein, the cAMP-receptor protein (CRP) (Mackman & Sutherland 1965). This protein is homologous to protein kinases, which are intracellular cAMP receptors in unicellular eukaryotes (Weber et al. 1982, Saxe et al. 1991).

It is obvious that with the development of multicellularity, cAMP cannot act as a cell-to-cell messenger because of its intrinsic chemical instability, and can only carry information as an intracellular second messenger by means of cytosolic cAMP-dependent protein kinases (Weber et al. 1982).

The presence of membrane and cytosolic cAMP receptors suggests the development of transitional stages during evolution. Clearly, each form of cAMP/cAMP receptor unit is linked to a determined facet within the evolutionary triptych of bioregulator−receptor interaction including: (i) autocrine (membrane form of cAMP receptor, cAMP=first messenger); (ii) paracrine (membrane and cytosolic forms of cAMP receptor, cAMP=first and second messenger); (iii) endocrine (cytosolic form of cAMP receptor, cAMP=second messenger).

The transitional taxonomic level on the cAMP receptor evolution may be represented today by Dictyostelium discoideum, an intermediate stage displaying: (i) a level of organization that is
TABLE 2. Ubiquity of information molecules with structural homology and/or functional analogy to those of vertebrates

<table>
<thead>
<tr>
<th>Organism</th>
<th>Binding protein for:</th>
<th>K_d (M)</th>
<th>Bioregulator</th>
<th>G-protein</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeabacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halobacterium halobium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schimz et al. (1989)</td>
</tr>
<tr>
<td>Eubacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ahnn et al. (1986)</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proventor cryptodes</td>
<td>Thyrotrophin 4·2 × 10$^{-8}$ M</td>
<td></td>
<td>Human choriogonadotrophin</td>
<td></td>
<td>Maruo et al. (1979)</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weiss et al. (1983)</td>
</tr>
<tr>
<td>Pseudomonas testosteroni</td>
<td>Testosterone 6·7 × 10$^{-8}$ M</td>
<td></td>
<td></td>
<td></td>
<td>Watanabe et al. (1973a)</td>
</tr>
<tr>
<td>Pseudomonas maltophilia</td>
<td>Human choriogonadotrophin 2·3 × 10$^{-8}$ M</td>
<td></td>
<td></td>
<td></td>
<td>Richert & Ryan (1977)</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyostelium discoideum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>17β-Oestradiol 3·0 × 10$^{-9}$ M</td>
<td></td>
<td>17β-Oestradiol</td>
<td></td>
<td>Brock et al. (1985)</td>
</tr>
<tr>
<td></td>
<td>GnRH 1·0 × 10$^{-8}$ M</td>
<td></td>
<td>Alpha factor homologous to GnRH</td>
<td></td>
<td>Loumaye et al. (1982)</td>
</tr>
<tr>
<td>Neurospora crassa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichophyton mentagrophytes</td>
<td>Progesterone 6·8 × 10$^{-8}$ M</td>
<td></td>
<td></td>
<td></td>
<td>Schar et al. (1986)</td>
</tr>
<tr>
<td>Trypanosoma cruzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahymena pyriformis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>Corticosterone 7·2 × 10$^{-8}$ M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trypanosoma cruzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eisenschlos et al. (1986)</td>
</tr>
<tr>
<td>Tetrahymena pyriformis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schwabe et al. (1983)</td>
</tr>
<tr>
<td>Trypanosoma cruzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Le Roith et al. (1980)</td>
</tr>
<tr>
<td>Tetrahymena pyriformis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Le Roith et al. (1983)</td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platyhelminthes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anodonta cignea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plisetskaya et al. (1978)</td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>De Longcamp et al. (1974)</td>
</tr>
<tr>
<td>Lymnaea stagnalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grimm-Jorgensen (1983)</td>
</tr>
<tr>
<td>Annelids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycera convoluta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planarians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausoboa conchol'ata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planarians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
transitional between prokaryotic and multicellular organisms; (ii) *D. discoideum* has both membrane and cytosolic forms of cAMP receptors; (iii) in this species cAMP acts as a paracrine bioregulator (first messenger) and intracellular regulatory molecule (second messenger) (Table 4).

It seems likely that in the development of transitional stages such as *D. discoideum*, the earliest membrane receptors were the predecessors of cytosolic receptors. There are other examples of transitional stages; for example, progesterone, testosterone and gonadotrophins can act through both membrane and cytosolic receptors (Baulieu et al. 1978, Rao & Chegini 1983, Diez et al. 1984).

Briefly, contemporary endocrine bioregulators (hormones, neuroactive materials) were probably, in the past, exocrine information molecules (food signals, pheromones), and their contemporary clearly defined endocrine functions (sexual reproduction, developmental processes) are more a product of target tissue specialization (e.g. transduction mechanisms) than a consequence of changes in the structure of the bioregulators themselves.

These views are supported by several observations: (i) the most effective signals for the chemotactic response in *E. coli* (maltose, glucose, serine, aspartate) are used as nutritive molecules (Adler 1969) in contrast to more specialized bioregulators (neuroactive compounds, hormones); (ii) the receptors or binding proteins in unicellular organisms display clear threshold values for chemotaxis towards a particular bioregulator (Adler 1975), which resemble the dissociation constant (*Kd*) of vertebrate-type bioregulators (Table 2). For example the threshold value of reduced glutathione (GSH), a feeding response activator (Lenhoff 1968, Colasanti et al. 1995), in *Hydra littoralis*, a member of one of the most ancient phyla among multicellular organisms, the Coelenterates, is 10^{-9} M.

GSH has, phylogenetically, the characteristics of a transitional stage among food signals and contemporary bioregulators (hormones, pheromones) because: (i) it plays a dual role acting in *Hydra* both as a chemical signal for detection of food sources, and as a neuromodulator of behavioural feeding response; (ii) like contemporary bioregulators, GSH is not used as a nutritive molecule.

In addition, primitive peptides and ancestral lipid molecules (sterols, steroids) were probably all growth promoting factors as a consequence of their intrinsic nutritional value. For example, *Pseudomonas testosteroni* is a prokaryote capable of utilizing steroids as their only carbon source (Watanabe et al. 1973a,b).

It is thus important to note a plausible relationship among some enzymes involved in the

<table>
<thead>
<tr>
<th>Reference</th>
<th>Bioregulator</th>
<th>Binding protein for:</th>
<th>G-protein</th>
<th>Kd</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertielli et al. (1964)</td>
<td>[17β-Oestradiol, androgens, 11-deoxycorticosterone, Insulin, Somatostatin, Testosterone]</td>
<td></td>
<td></td>
<td>40 kDa</td>
<td></td>
</tr>
<tr>
<td>Schildknecht et al. (1966)</td>
<td>Oestradiol, androgens, Insulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shida et al. (1969)</td>
<td>Drosophila melanogaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thambidi et al. (1989)</td>
<td>Carnobacterium, Parafusobacteriaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falkner et al. (1978)</td>
<td>Listeria monocytogenes, Staphylococcus, Bacillus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sato-Kakekada et al. (1971)</td>
<td>Urochordates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iwamoto et al. (1979)</td>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Roith et al. (1985b)</td>
<td>Spinach, tobacco, Wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zioudrov et al. (1979)</td>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Continued

GnRH, gonadotrophin releasing hormone.
TABLE 3. Heterotrophic effects of some bioregulators

<table>
<thead>
<tr>
<th>Bioregulator</th>
<th>Organism</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>17β-Oestradiol</td>
<td>Vertebrates</td>
<td>Maturation of accessory sexual tissues</td>
<td>Geuns (1978)</td>
</tr>
<tr>
<td></td>
<td>Plants</td>
<td>Induction of flowering, sex determination</td>
<td>Geuns (1978)</td>
</tr>
<tr>
<td></td>
<td>Opalina ranarum (Protozoan)</td>
<td>Cause encystment</td>
<td>El Mofty & Smyth (1964)</td>
</tr>
<tr>
<td></td>
<td>Trypanosoma cruzi (Protozoan)</td>
<td>Growth inhibition</td>
<td>A M Stoka (unpublished observation)</td>
</tr>
<tr>
<td></td>
<td>Coccidioides immitis (Fungi)</td>
<td>Growth stimulation</td>
<td>Druutz et al. (1981)</td>
</tr>
<tr>
<td></td>
<td>Paracoccidioides brasiliensis (Fungi)</td>
<td>Growth inhibition</td>
<td>Loose et al. (1983)</td>
</tr>
<tr>
<td>Progesterone</td>
<td>Trichophyton mentagrophytes (Fungi)</td>
<td>Growth inhibition</td>
<td>Schar et al. (1986)</td>
</tr>
<tr>
<td></td>
<td>Xenopus laevis (Amphibia)</td>
<td>Induction of meiotic division</td>
<td>Baulieu et al. (1978)</td>
</tr>
<tr>
<td>Thyroxine</td>
<td>Mammals</td>
<td>Regulation of: (a) oxidative metabolism, (b) growth</td>
<td>Tata (1964)</td>
</tr>
<tr>
<td></td>
<td>Amphibians</td>
<td>Regulation of metamorphosis</td>
<td>Tata (1964)</td>
</tr>
<tr>
<td>Prolactin</td>
<td>Mammals</td>
<td>Milk secretion</td>
<td>Bern & Nicoll (1969)</td>
</tr>
<tr>
<td></td>
<td>Birds</td>
<td>Crop-milk production</td>
<td>Bern & Nicoll (1969)</td>
</tr>
<tr>
<td>Adipokinetic hormone</td>
<td>Insects</td>
<td>Lipid mobilization</td>
<td>Stone et al. (1976)</td>
</tr>
<tr>
<td></td>
<td>Crustaceans</td>
<td>Pigment concentration</td>
<td>Stone et al. (1976)</td>
</tr>
<tr>
<td>Juvenile hormone</td>
<td>Insects</td>
<td>Regulation of: (a) reproduction, (b) metamorphosis</td>
<td>Stoka (1987)</td>
</tr>
<tr>
<td></td>
<td>Mammals</td>
<td>Inhibition of testicular steroidogenesis</td>
<td>Vladusic et al. (1994)</td>
</tr>
<tr>
<td>20-OH-ecdysone</td>
<td>Insects</td>
<td>Moulting hormone</td>
<td>Stoka (1987)</td>
</tr>
<tr>
<td></td>
<td>Trichonympha sp (Protozoan)</td>
<td>Growth stimulation and sexual differentiation</td>
<td>Cleveland (1959)</td>
</tr>
</tbody>
</table>
metabolism of bioregulators, and the origin of receptors. An interesting point of view is that binding and catalytic activities of some cell surface receptors arose from primitive enzymes. This hypothesis is supported by the presence of some transitional stages among enzymes and receptors: (i) the transport of testosterone in membrane vesicles of *P. testosteroni* is coupled to membrane bound 3β- and 17β-hydroxysteroid dehydrogenases (Watanabe & Po 1976); (ii) a membrane form of guanylate cyclase in mammals acts as a receptor for atrial natriuretic peptide (Chinkers et al. 1989); and (iii) the cytosolic receptor for salicyclic acid in plants has catalase activity (Chen et al. 1993).

Furthermore, some point mutations in the binding site of an enzyme enhanced its substrate binding capacity although they produced a catalytically non-productive species (Craik et al. 1985).

The catalytic and binding capacities of prokaryotes were probably employed in a different fashion to their contemporary hormonal ones in multicellular organisms and represented a vestige of Precambrian times (exaptation process). Some advantageous changes in the structure of prokaryotic enzymes involved in the metabolism of nutritive substrates (e.g. 3β- and 17β-hydroxysteroid dehydrogenases of *P. testosteroni*) may have ‘filtered’ through the natural selection process, and evolved into other functions such as autocrine, paracrine and/or endocrine signal receptors to facilitate regulation of intracellular processes. In this evolutionary scenario a different type of regulation may be considered. A bioregulator can be produced and act within the same cell (intracrine regulation) (O’Malley 1989). It is known that certain unicellular organisms biosynthesize steroid hormones and contain intracellular steroid receptors. Examples include *Saccharomyces cerevisiae* and *Candida albicans* (Loose et al. 1981, Loose & Feldman 1982, Feldman et al. 1982, 1984).

If the first unicellular organisms possessed few multifunctional molecules, probably nutritional compounds would serve both as metabolic and regulatory elements. It is possible then, that intracrine regulation could be a transitional stage between regulation through metabolic substrates (nutritive line) and hormonal modulation (regulatory line).

Primitive members of the contemporary steroid receptors family were possibly membrane enzymes which bound environmental nutritional molecules (steroids, sterols), and their prime regulatory function was to control intracellular metabolism.

Such relationships between food signals and contemporary bioregulators do not preclude other parallel original functions of bioregulators in defence functions.

The primary role of ancestral bioregulators in unicellular organisms was a nutritional one, but the adaptive radiation among molecules produced compounds that were inhibitors (e.g. toxins) of enzymes involved in the growth of competitive species.

PHYLOGENETIC ASPECTS OF BIOREGULATOR–RECEPTOR RELATIONSHIP

Some ligand–binder relationships (substrate–enzyme, antigen–antibody, bioregulator–receptor) must be restricted to an interaction with specific and small regional domains within their structures, as exemplified by insulin and its receptor (Pullen et al. 1976).

The chemical structure of bioregulators has been well conserved through evolution and there are high degrees of homology within the system (Table 2). In addition, the divergent functions of bioregulators with a similar structure (e.g. progesterone/cortisol) pose a number of questions including the following.

Have receptors evolved in a similar way? How similar and how different are receptors for different bioregulators?

A case in point is that the amino acid sequences of nuclear thyroid hormone receptors display homology with a similar domain of several steroid

Table 4. Evolutionary transition of cAMP-receptors: from membrane to cytosolic environment

<table>
<thead>
<tr>
<th>Organization level</th>
<th>Organism</th>
<th>Type of c-AMP receptor</th>
<th>c-AMP function</th>
<th>Interaction c-AMP/c-AMP receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prokaryote</td>
<td>Escherichia coli</td>
<td>Membrane form</td>
<td>First messenger</td>
<td>Autocrine</td>
</tr>
<tr>
<td>Eukaryote unicellular</td>
<td>Dictyostelium discoideum</td>
<td>Membrane and cytosolic forms</td>
<td>First and second messenger</td>
<td>Paracrine</td>
</tr>
<tr>
<td>Eukaryote multicellular</td>
<td>Vertebrates and invertebrates</td>
<td>Cytosolic form</td>
<td>Second messenger</td>
<td>Endocrine</td>
</tr>
</tbody>
</table>

Mackman & Sutherland (1965); †Gerish (1987); Saxe et al. (1991); ‡Weber et al. (1982).
hormone receptors (Weinberger et al. 1986). Thus, the relationship between steroid hormone receptors and thyroid hormone receptors suggests that all these receptor structures, including the v-erb-A oncogene product of the avian erythroblastosis virus (AEV), may be a superfamily of information molecules that have evolved in several divergent lines during their phylogeny. However, the existing homologies between the thyroid hormone receptors and steroid hormone receptors, vitamin D$_3$, aldosterone, cortisol, testosterone, progesterone or oestradiol did not seemingly compete (Weinberger et al. 1986). Obviously, the secondary, tertiary and quaternary structures of the thyroid hormone receptor increase specificity for thyroid hormone.

What is the origin of the bioregulator–receptor specificity?

The origin of cell specificity for a determined bioregulator depends on the critical period of receptor maturation which determines its binding properties (Blazquez et al. 1976) and which may be influenced or altered by the action of a similar chemical structure (Csaba 1980).

On the other hand, the superfamily of steroid receptors, besides receptors binding thyroid hormones, retinoid acid or steroid hormones, contains orphan receptors for which no ligand is known (O’Malley 1989, Escriva et al. 1997). It seems likely that the number of ancestral steroid receptors (enzymes?) was expanded by the presence of immature receptors which adopted different binding-site configurations with high specificity for particular ligands, as occurs with the evolution of antibody catalysis (Wedemayer et al. 1997).

Another aspect involved in the origin of bioregulator–receptor interaction is the structural similarity between secreted bioregulators and chemical components of cells. It has been suggested that pheromones and hormones evolved from membrane components (Kochert 1978, Pfeffer & Ullrich 1985). Accordingly, there are two hypotheses to explain the origins of bioregulator–receptor units.

Hypothesis 1: polypeptide hormones are produced by proteolytic cleavage of membrane proteins of secondary lysosomes (Hales 1985)

The peptide hormone, epidermal growth factor (EGF), is cleaved from membrane protein (Kaback 1985). In addition, bioregulators and their receptors may evolve as a result of changes in the DNA by gene duplication and subsequent point mutational events. Some genes encoding receptor–bioregulator units began as single genes encoding single polypeptide molecules. Gene splitting and different gene expressions may have induced the synthesis of bioregulators and their receptors in different cell types (Niall 1982, Kaback 1985).

Hypothesis 2: the presence of a bioregulator is an essential condition for receptor formation (the theory of signal-imprinting, Csaba 1980)

During this process, there is likely to be initial contact between a chemical signal and a potential receptor region of the cell membrane, and induction of shape complementarity and hydrophobicity of the interacting surfaces may take place (Tainer et al. 1984).

However, it is not only the bioregulator–receptor unit which determines the quality of physiological responses under its control. Phylogenetically transducing systems involve trimeric G-proteins, identified in various prokaryotes (Ahnn et al. 1986, Schimz et al. 1989) and eukaryotes (Namba et al. 1983, Firtel et al. 1989, Whiteway et al. 1989).

In addition to the homologies among steroid receptors and thyroid hormone receptors (Weinberger et al. 1986), there is another type of homology – that of G-proteins. Key observations are: (i) the prostaglandin E receptor subtype EP3 and the tromboxane A$_2$ receptor belong to the large superfamily of receptors coupled to G-proteins which consist of seven transmembrane domains (Namba et al. 1983) and are isoforms of rhodopsin (Franke et al. 1990) and dopamine receptors (Monsmo et al. 1989); (ii) the sequence and size variation among receptor domains whereby receptors bind G-proteins (Monsmo et al. 1989) suggest widespread diversity within the G-protein family. Thus, different physiological responses of receptor isoforms are structurally based (Fig. 3).

In addition, there is other evidence for conservation and functional versatility of information molecules: (i) the pheromone signalling pathway in _S. cerevisiae_ is activated by an heterologous transducing system including the human β-adrenergic receptor and the rat Gs-protein (King et al. 1990); (ii) _S. cerevisiae_ has a primitive steroid receptor system analogous to the mammalian oestriadiol receptor unit (Feldman et al. 1982, 1984); (iii) a bioregulator can interact with autocrine and paracrine receptors to accrue more physiological functions (Mackman & Sutherland 1965, Gerish 1987, Saxe et al. 1991, Vallesi et al. 1995); (iv) a receptor in combination with homologous bioregulators can regulate the same physiological response in a determined target tissue (Stone et al. 1976, Mordue & Stone 1976, 1977); (v) a receptor can bind different bioregulators and elicit varying patterns of gene activation but with the same effects.
in a particular tissue (Yang et al. 1996, Paech et al. 1997).

SOME HYPOTHESES TO EXPLAIN THE EVOLUTION OF INFORMATION MOLECULES

A basic question is: were contemporary bioregulators (hormones, neuroactive compounds, growth factors, pheromones) primary chemical messengers such as food signals and defensive compounds?

Sterols have probably played an important function as growth bioregulators in the Precambrian period, 1000–3000 × 10⁶ years ago. Some evidence supports this hypothesis: (i) cellular life may have been present about 3000 years ago; (ii) sterol biosynthesis existed at a very early stage in some fermenting bacteria (Schwemmler 1984); (iii) some sterols participate in the activation of oocyte meiosis (Byskov et al. 1995) – a possible feature of ancestral bioregulators was the control of cell division; (iv) the presence of both binding and catalytic activities for vertebrate-type steroid hormones in aerobic bacteria (Watanabe et al. 1973a,b, Watanabe & Po 1976).

Indeed there are important differences in structural conservation during the phylogeny of information molecules. Some bioregulators such as steroid and thyroid hormones are rigorously conserved because they result from enzymic cascades and require almost absolute substrate specificity. In contrast others (somatomammotrophins, pituitary glycoproteins, secretins) are direct gene products and will tolerate change providing the ‘active’ (receptor activating) portion of the peptide is not changed and variation can be tolerated (Henderson 1997).

In some cases, the structural evolution of information molecules produced a functional versatility of a hormone. For example, prolactin has acquired different functions among vertebrates: (i) osmoregulatory activity in fish; (ii) growth-promoting activity in tetrapods; (iii) metamorphosing actions in amphibians; and (iv) lactogenic activity for neonatal nutrition in mammals and birds (Bern & Nicoll 1969).

Correlated with these physiological acquisitions, comparative studies on structural and functional bioregulator–receptor interactions reveal that both prolactin and prolactin receptors have undergone considerable changes (White & Nicoll 1979), although there is no strict relationship between functional versatility and the number of chance substitutions in the structure of informational molecules.

A most striking example in this area is the structural change found in naturally occurring insulins among vertebrates. These insulins have different affinities for the insulin receptor in mammalian tissues (Muggeo et al. 1979) and they differ 50- to 100-fold in their potency (Blundell et al. 1972).

At the level of specificities among ligands and binders, some bioregulator–receptor units seem to be in a transitional evolutionary stage according to their cross reactions, as occurs with arthropod neurohormones (Fig. 4, Table 5). In contrast, other bioregulator–receptor units such as the glucagon/glucagon receptor unit (Blundell & Humbel 1980) display maximum specificity. It is thus possible that different bioregulator–receptor units in a particular species evolved at different rates and times, as occurred with some morphological characteristics, a process termed mosaic evolution (De Beer 1954); there are several examples for different molecules (Wilson et al. 1977). From a functional point of view, the prolactin/prolactin receptor unit has evolved more rapidly than the insulin/insulin receptor unit.
as judged by the number of known physiological functions acquired during vertebrate evolution. In addition, the taxonomic distribution of insulin and prolactin differs (Fig. 5) and does not correlate with their functional versatility. In this regard, it may be that chemical communication arose many times during phylogeny and primordial information molecules, with functional and/or structural characteristics different to present-day bioregulator–receptor units, may have appeared and disappeared as a result of changes in the expression of genetic information (point mutations, gene duplication, alternative splicing, transpositions, etc.). The very nature of the regulation of genetic transcription would indicate that the genome of contemporary biota must contain DNA regions with information for potential unexpressed bioregulator–receptor units, and therefore the specific group of present-day information molecules may be only one of several lineages.

Indeed, these non-translated DNA regions (introns) are, in terms of genetic information, the remnant of phylogenetic history and the building blocks of current and future evolution.

This hypothesis is supported by ectopic endocrine activity of patients with neoplasia. It was observed that the occasional disruption of normal cell differentiation can produce nonendocrine tumours, capable of synthesizing a great amount of hormones (e.g. phaeochromocytoma) (Baylin & Mendelsohn 1980). Such complicated and fascinating processes reflect a regression towards a primordial cellular stage; under such conditions it seems that there is a return to a cellular pluripotentiality for the biosynthesis of information molecules. Such potential information molecules may arise from ‘hidden’ sequences of DNA regions (introns) and developed unknown (extinct or new) bioregulator signalling mechanisms. Evolution in a sense can go into reverse to re-express earlier chemical communication systems.

It is also plausible that present-day chemical communication systems may be superior to primordial systems, but they may not necessarily always be so under some conditions.

CONCLUSIONS

The inherent similarity of mechanisms involved in bioregulator–receptor interactions reveals that glandular and nervous systems (endocrine systems) may have a common origin from a pheromonal system (primordial exocrine system) of unicellular organisms.

This hypothesis can explain many phenomena: (i) vertebrate-type hormones acting in unicellular organisms as pheromones that cause regulatory effects (Tables 2 and 3); (ii) the presence of vertebrate-type bioregulators (gastrin, somatostatin, prolactin) in classical exocrine fluids such as saliva, gastric juice and other humoral secretions (Le Roith

TABLE 5. Effects of arthropods neurohormones

<table>
<thead>
<tr>
<th>Neurohormone</th>
<th>Pigment concentrating activity in erythrophores (Crustacea)</th>
<th>Hyperglycaemic activity in fat body cells (Insecta)</th>
<th>Adipokinetic activity in fat body cells (Insecta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Adipokinetic hormone (AKH)</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Yes</td>
</tr>
<tr>
<td>‡Periplanetin (CC-1)</td>
<td>—</td>
<td>Yes</td>
<td>Yes*</td>
</tr>
<tr>
<td>§Red pigment concentrating hormone</td>
<td>Yes</td>
<td>—</td>
<td>Yes*</td>
</tr>
</tbody>
</table>

Cross-reactions (*) were observed among arthropod neurohormones. Probably binding and transduction activities of neurohormone receptors could have evolved independently. The evolution of arthropod neurohormones and their receptors seems to be an example in which specificity has not reached a maximum (transitional or immature stage).

†Mordue & Stone (1976, 1977); Stone et al. (1976); †Hanaoka & Takahashi (1976); ‡Mordue & Stone (1976, 1977); Ferlund (1974).
et al. 1986); (iii) the ubiquity of insulin in extrapancreatic tissues of mammals (brain, liver, cultured lymphocytes and fibroblasts) (Rosenzweig et al. 1980), insects (Duve et al. 1979), annelids (Le Roith et al. 1981b) and unicellular organisms (Le Roith et al. 1980, 1981b); (iv) the overlap of brain and gut bioregulators in mammals (Zimmerman 1979) and insects (Duve & Thorpe 1981); (v) the biosynthesis of gastrointestinal hormones in neural, endocrine and paracrine cells (Grosman 1979); (vi) gonadal steroid hormones acting as defensive agents (Schildknecht et al. 1966, 1967, Loose et al. 1983, Schar et al. 1986); (vii) the presence of specific binding of insulin to the unicellular alga Acetabularia mediterranea (Legros et al. 1975); (viii) the ubiquitous distribution of thyrotrphin releasing hormone in the animal kingdom (Henderson 1997) and plants (Morley et al. 1980, Jackson 1981).

It is suggested that endocrine secretory mechanisms (glandular, nervous) have a common origin and are products of phylogenetic and evolutionary processes from unicellular organisms (primordial exocrine bioregulators) to multicellular organisms (contemporary exocrine and endocrine bioregulators).

On the other hand, receptor binding activities seem to have arisen as a result of modifications in the structure of enzymes. Within this hypothesis a divergent evolution is possible since enzyme binding activity need not always co-evolve with its intrinsic catalytic activity. Such an evolutionary mechanism enables receptors to be created without the development of additional binding sites (Stone et al. 1976, Shemshedini & Wilson 1990, Lee et al. 1992).

It is not surprising that receptor evolution, as with other evolutionary characteristics, required millions of years during which some transitional stages (e.g. hormonal receptors with catalytic activity) predominated. Enzymes are thus the key to understanding the origin and evolution of both enzymes and receptor binding activities. Some basic questions are obviously raised: how similar are the binding regions of receptors and enzymes for a particular bioregulator? Is the origin of receptor and enzyme binding activities, for a particular bioregulator, a product of convergent or divergent evolutionary processes?

Although evidence is scanty, it is possible that by mutational and natural selection processes a bioregulator–receptor unit arose through initial divergent evolution followed by a convergent process. Convergent and divergent evolution have been noted in some eukaryotic phosphorylases (Hwang & Fletterick 1986). Figure 6 illustrates possible sequences within the evolutionary history of bioregulator–receptor units.

The evolutionary development of chemical communication systems reflects parallel evolution of all information molecules (bioregulators, receptors, Roith et al. 1980, 1981b).
Hypothetical sequence of evolutionary transitions from a potential signal-receiver unit to bioregulator–receptor interaction. Evolutionary stages: 1, potential signal-receiver unit; 2, substrate–enzyme interaction; 3, pheromone–membrane receptor interaction; 4, neurotransmitter or hormone-receptor interaction; 5, bioregulator (pheromone, hormone, neurotransmitter)–nuclear receptor interaction. Initially, in this schematic representation, a potential signal-receiver unit (stage 1) may have evolved into two divergent models: (i) enzyme (membrane form)–substrate (nutritive line) (stage 2); (ii) membrane receptor–pheromone (regulatory line) (stage 3). After this divergent process, a convergent evolution is possible; for instance the receptor binding activities arose from enzymes involved in the metabolism of nutritive substrates as a result of: (i) point mutations in the binding site (transition c substrate specificity enhancement and catalytic activity diminution) (Craik et al. 1985); (ii) altered binding specificity may also influence interactions of some molecules (nutritive substrates, transition molecules) with membrane receptors which acquire a pheromonal status. On the other hand, these transition molecules may have evolved into toxins which may serve as enzyme inhibitors or enzyme activators. Transitions: a, origin of signal-receiver units through genetic or imprinting mechanisms; b, origin of endocrine bioregulators (neurotransmitters, hormones, etc.) through the development of multicellularity; c, hormonal and pheromonal receptors arose from primitive enzymes; d, probable relationship between nutritive substrates and food signals; e, transition molecules (pheromone-like compounds) arose from advantageous changes in the structure of food signals; f, receptor internalization process: from membrane receptors to soluble intracellular receptors. BBB, biological building blocks; CM, cell membrane; DNA-RecE, DNA-response element, R, receptor; H, hormone; P, pheromone; NS, nutritive substrate; E, enzyme; B, bioregulator (hormone, pheromone, etc.), TM, transition molecule; FS, food signal; T, toxin; N, neurotransmitter.
transducers, enzymes, second messengers, second messenger cascades, etc.), which are sometimes co-ordinated and essential processes (adaptation) and are sometimes opportunistic and random events (exaptation).

Despite extensive accumulation of information over the last 20 years, many important gaps remain in our knowledge of phylogenetic relationships and genetic processes therein.

Virtually nothing is known about: (i) the effects of mutations in different kinds of genes (multiple genes, simple non-overlapping genes) that can be quite different according to their primary function, (ii) whether it is possible to describe the exact physico-chemical conditions and frequencies of new adaptations and exaptations.

Molecular endocrinology is now at a stage when some of these and other questions can be addressed. The author expects that this review will stimulate new routes of thinking in research teams that work in the area.

ACKNOWLEDGEMENTS

This work was carried out with financial assistance from Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Argentina.

I thank Drs Luis Mayorga and Armando Parodi for useful comments on the manuscript. I would also like to express my thanks to Prof. I Henderson for his assistance in the revision of the manuscript.

REFERENCES

Baulieu EE, Godeau F, Schorderet M & Schorderet-Slatkine S 1980 Phylogeny and ontogeny of hormone receptors: (i) differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell 41 763–769.

Butenandt A 1963 Bombycol, the sex attractive substance of the silkworm Bombyx mori. Journal of Endocrinology 27 IX-XVI.

Cleveland LR 1959 Sex induced with ecdysone. Proceedings of the National Academy of Sciences of the USA 64 747–753.

Crisp DJ & Meadows PS 1962 The chemical basis of gregariousness in cirripedes. Proceedings of the Royal Society (B) 156 500–520.

El Mofy MM & Smyth JD 1964 Endocrine control of encystation in the snail Pila ranarum parasite in Rana temporaria. Experimental Parasitology 15 185–199.

Le Roith D, Shiloach J, Roth J & Lesniak MA 1980
Evolutionary origin of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes. Proceedings of the National Academy of Sciences of the USA 77 6184–6188.

Mordue W & Stone JV 1977 Relative potencies of locust adipokinetic hormone and prawn red pigment concentrating hormone in insect and crustacean systems. General and Comparative Endocrinology 33 103–108.

Muggeo M, Gansberg BH, Roth J, Neville DM Jr, Demeyts P & Kahn CR 1979 The insulin receptor in vertebrates is functionally more conserved during evolution than insulin itself. Endocrinology 104 1393–1402.

Riedel H, Dull TJ, Schlessinger J & Ullrich A 1986 A chimaeric receptor allows insulin to stimulate tyrosine kinase

Tata JR 1964 Basal metabolic rate and thyroid hormones. Advances in Metabolic Disorders 1 153–189.

REVISED MANUSCRIPT RECEIVED 17 August 1998