REVIEW

Hormonal regulation of apolipoprotein AI

G M Hargrove, A Junco and N C W Wong

Departments of Medicine and Biochemistry & Molecular Biology, the Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1.

(Requests for offprints should be addressed to N C W Wong, Departments of Medicine and Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1)

ABSTRACT

Apolipoprotein AI (apo AI) is the major protein component of the serum high-density lipoprotein (HDL) particles. The antiatherogenic properties of apo AI alone or as part of HDL and their inverse correlation with the incidence of coronary heart disease underlie the clinical importance of the protein. A detailed understanding of the mechanisms by which apo AI is regulated will help us develop new and better ways to manipulate expression of the protein. Although there are many factors that influence apo AI expression, endogenous hormones are attractive because simple changes in abundance of these compounds will alter gene activity. Hormones belonging to the thyroid/steroid family that influence activity of the gene include thyroid hormone, glucocorticoids, gender-specific steroids and retinoic acid. Whereas thyroid, glucocorticoid and estradiol enhance activity of the gene, retinoic acid and androgens decrease it. The mechanisms that mediate the effects of the hormones include direct effects of the ligand and nuclear receptor complex on gene activity. However, indirect means involving the participation of transcription factors other than the hormone receptors are also possible. In summary, members of the same hormone family may have different mechanisms that mediate their activities on apo AI gene activity.

Journal of Molecular Endocrinology (1999) 22, 103–111

INTRODUCTION

Apolipoprotein AI (apo AI) is the major protein component of high-density lipoprotein (HDL) particles in serum. These particles have an important role in the protection against arteriosclerotic vascular disease, because they provide a shuttle mechanism that transports cholesterol from extrahepatic tissues to the liver for processing to bile salts (Miller et al. 1985, Franceschini et al. 1991). This pathway is a normal physiologic process called reverse cholesterol transport (RCT), and the end result of this process leads to lower concentrations of total cholesterol (Kashyap 1989). As hypercholesterolemia is one of the modifiable risk factors underlying ischemic heart disease, currently the most important cause of premature death in the world (Murray & Lopez 1997), new ways to lower cholesterol are of interest to both the medical community and the general population.

The knowledge that apo AI alone or as part of HDL has antiatherogenic properties (Miller 1987, Barter & Rye 1996, Luoma 1997) provides the rationale for many investigators to examine the specific factors that regulate expression of the gene. A better understanding of how the gene is regulated will help us design new therapies to manipulate expression of the protein and thus augment RCT. The ability to control RCT is expected to benefit members of the population who suffer from arteriosclerotic vascular disease.

Well known factors that have a beneficial effect on the abundance of apo AI protein include: physical exercise (Huttunen et al. 1979, Ballantyne et al. 1982, Danner et al. 1984), alcohol consumption (McConnell et al. 1997, Manttari et al. 1997) and
being female (Heiss et al. 1980). These factors increase concentrations of apo AI protein. Recent studies show that pharmacologic agents such as fibrates, phenytoin and phenobarbital also modulate the concentrations of this protein (Nikkila et al. 1978, Kaste et al. 1983, Muuronen et al. 1985, Reddy 1985). In addition to the preceding pharmacologic agents, a host of natural hormones also influence apo AI protein concentrations. A better understanding of the mechanisms by which hormones regulate apo AI concentrations is particularly attractive, because this knowledge offers potentially useful information to help us manipulate apo AI expression by adjusting concentrations of the specific hormone or using analogs of the parent hormone. The list of hormones known to enhance or suppress apo AI protein include thyroid hormones (Apostolopoulos et al. 1987, Strobl et al. 1990), glucocorticoids (Elshourbagy et al. 1985, Ettinger et al. 1987), sex steroids (Kalin & Zumoff 1990) and retinoic acids (Zech et al. 1983). Most of these hormones exert effects at the gene level; a schematic diagram of the apo AI promoter and the respective cis-acting elements that mediate the effects of these hormones is presented below (Fig. 1). This review summarizes the knowledge of the mechanisms by which these compounds influence apo AI expression. The information provides a framework for the development of new directions in this field of research.

Thyroid hormones

The hormones synthesized by the follicular cells of the thyroid gland were amongst the first observed to affect cholesterol metabolism. Hypercholesterolemia was a useful marker for the diagnosis of hypothyroidism in patients before the general availability of rapid measurements of thyroid function. This abnormality was described in studies of hypothyroid patients conducted more than 60 years ago (Mason et al. 1930). Since then, numerous investigators have attempted to elicit the mechanisms responsible for the changes in lipid metabolism underlying hypercholesterolemia. Both the thyroid hormones, L-thyroxine (T\(_4\)) and L-triiodothyronine (T\(_3\)), are believed to have a variety of effects on the concentration of cholesterol. For example, in the presence of thyroid hormones, hepatic synthesis of cholesterol is actually enhanced (O’Hara et al. 1966), adding to the concentration of total cholesterol, but these hormones also increase the fractional clearance rates of very-low-density lipoprotein and low-density lipoprotein (LDL) particles (Rossner & Rosenqvist 1974, Abrams et al. 1981), in addition to the hepatic excretion of cholesterol (Miettinen 1968). The net effect of the opposing actions of the hormones in the liver gives rise to greater concentrations of cholesterol in hypothyroid individuals compared with those with euthyroid or hyperthyroid levels of the hormones.

Pertinent to this review are the effects of thyroid hormone on HDL concentrations and how these changes contribute to total cholesterol. In patients with hyperthyroidism, the concentrations of HDL cholesterol are generally lower (Scottolini et al. 1980, Valdemarsson 1983) than those in patients with hypothyroidism (Feely et al. 1980, Scottolini et al. 1980). However, other studies show decreased concentrations of HDL cholesterol in patients with hypothyroidism (Abrams & Grundy 1981). In addition, the different classes of HDL particles

\[\text{Hormonal regulation of apo AI} \]

\[\text{Journal of Molecular Endocrinology (1999) 22, 103–111} \]
appear to be affected differently by thyroid hormone (Aviram et al. 1982, Kris-Etherton et al. 1982). This lack of a uniform effect is mirrored in the studies of hypothyroid patients treated with thyroid hormone leading to variable outcomes (Wahlquist et al. 1977, Ballantyne et al. 1979, Brun et al. 1980, Engelken & Eaton 1980, Malkonen & Manninen 1981, Aviram et al. 1982, Raziel et al. 1982). Part of this lack of uniformity may arise from the fact that HDL particles are synthesized by two tissues in the body—liver and small intestine (Smith et al. 1978).

A better understanding of the actions of thyroid hormones on apo AI expression comes from animal studies and cell culture models. In vivo studies in rodents show that thyroid hormone increases the concentrations of apo AI protein and the corresponding mRNA (Romney et al. 1992, Mooradian et al. 1996). There is debate whether changes in transcription of the gene match the observed increase in the protein and mRNA after exposure to thyroid hormone (Vandenbroucke et al. 1995). Given this controversy, subsequent studies have used cell culture models to examine the effects of the hormones on transcription of the apo AI gene, using transient transfection experiments. The extension of promoter studies to cell culture models is based on the examination of motifs within the apo AI promoter that resemble T₃-response elements (TRE) (Taylor et al. 1996b). A motif that resembles a positive TRE is located between -208 and -193 in the rat apo AI promoter, and corresponds to a similar sequence in the human gene between -214 and -192 (Rottman et al. 1991). This site matches the typical consensus TRE, except that the 6-bp repeats are separated by 2 bp, rather than 4 bp, of non-specific nucleotide sequence. When this site is intact, the response of the promoter is induced by T₃ and this positive effect requires the presence of the T₃-receptor (TR) (Romney et al. 1992, Taylor et al. 1996b). Furthermore, when this T₃-response element, TRE, was fused to the SV40 viral promoter, T₃ and its receptor caused a fourfold induction in the activity of the chimeric construct (Romney et al. 1992). Additional proof that the element from apo AI DNA was indeed a TRE comes from studies showing that TR binds to this sequence in the form of either a homodimer or a heterodimer, comprised of TR and retinoic acid receptor-α (RXRα) (Taylor et al. 1996b). The dominant actions of thyroid hormone on the apo AI promoter are mediated by the TRs, TRα and TRβ. These proteins belong to a superfamily of ligand receptors that also function as nuclear transcription factors (Beato et al. 1995, Laudet 1997). This superfamily of receptors includes those that bind to the thyroid and steroid hormones. The actions of these receptors are regulated by the binding and dissociation of specific hormones. In addition to TR, the apo AI-positive TRE may also bind two orphan members of the receptor superfamily: ARP-1 (Ladas & Karathanasis 1991) and HNF-4 (Sladek et al. 1991). The interaction of the various members of the receptor superfamily binding to the positive TRE contributes to the regulation of apo AI gene activity (Fuernkranz et al. 1994, Ginsburg et al. 1995, Murao et al. 1997).

The positive TRE is not the only T₃-responsive motif within the apo AI promoter that mediates the effect of thyroid hormone. Upon removal of the positive TRE, T₃ had a suppressive effect on the deletional construct and this observation led to the identification of a negative TRE fused to the 3’ end of the TATA-element in the apo AI promoter (Taylor et al. 1996b). This negative TRE also binds to TR. A comparison of the nucleotide sequence of the negative and positive TRE shows that, whereas the positive TRE is comprised of two 6-bp repeats (Naar et al. 1991, Umesono et al. 1991), the negative element also had the same 6-bp motif, but only a single copy (Carr & Wong 1994, Carr et al. 1992, Taylor et al. 1996b). Thus it is not surprising to find the binding of TR dimer to the positive TRE and a monomer to the negative TRE (Taylor et al. 1996b). The results from these studies show the dual effects of thyroid hormone on apo AI gene activity. This information has already proven useful in the research and development of thyromimetics that may eventually prove to be useful in regulating levels of apo AI expression (Taylor et al. 1997).

Glucocorticoids

The clue that glucocorticoids affect the expression of apo AI comes from clinical observations showing that serum concentrations of both apo AI protein and HDL are increased in patients with endogenous or exogenous glucocorticoid excess (Ettinger et al. 1987). This finding of a stimulatory action of glucocorticoids in humans has been extended to animals, and these models are useful for examining the mechanisms that underlie the actions of glucocorticoids. For example, rats given oral doses of the synthetic glucocorticoid, dexamethasone, on four consecutive days exhibited a twofold increase in hepatic apo AI mRNA (Elshourbagy et al. 1985). Similarly, rats injected with the steroid had three- to fourfold greater concentrations of apo AI in the serum and this was matched by a corresponding four- to sixfold induction of the mRNA in liver (Taylor et al. 1996a). Other investigators treated male rats with hydrocortisone for 20 days and found that the concentration of plasma apo AI increased to
150% of that in controls, and this finding was accompanied by a twofold increase in levels of the mRNA (Staels et al. 1991). In support of the data from animal models, the glucocorticoids also increase apo AI mRNA and augment synthesis of the protein in hepatoma cell lines (Masumoto et al. 1988, Varma et al. 1992). These observations clearly show that glucocorticoids increase apo AI gene expression in both in vitro and in vivo models.

Although one of the mechanisms by which glucocorticoids exert their effect involves their binding to a nuclear receptor, the resulting complex controlling gene activity, the effect of the steroid on apo AI expression is mediated by a different pathway. Recent results of experiments in our laboratory indicate that the stimulatory effects of glucocorticoids do not appear to require the binding of the glucocorticoid receptor, GR, to apo AI DNA (Taylor et al. 1996a). Glucocorticoids definitely have a transcriptional effect, as demonstrated by ‘run-on’ studies in hepatic nuclei of rats injected with dexamethasone. These showed that transcription of the apo AI gene was two- to threefold greater in treated animals compared with controls. Additional supportive evidence that glucocorticoids have a transcriptional effect on apo AI comes from transient transfection studies in HuH7 cells, a fetal hepatoma cell line known to contain the GR (Nakabayashi et al. 1989). Consistent with this finding, the introduction of chloramphenicol acetyl transferase (CAT)-reporter constructs containing the apo AI promoter in the presence of dexamethasone stimulated CAT-activity 3.1-fold. Furthermore, the internal deletion of site B (-170 to 145) from the promoter completely abolished the stimulatory effects of glucocorticoids (Taylor et al. 1996a). The B-motif is comprised of two non-anucleotide repeats in a head-to-tail orientation separated by four base pairs (Chan et al. 1993, Harnish et al. 1994). Both of these repeats appear to be critical for the response of the motif to glucocorticoids, because disruption of either 9-bp repeat inhibited the activity of the entire motif. Next, results of electrophoretic mobility shift studies showed that the GR does not bind to site B. However, dexamethasone clearly induced site B binding activities, but these activities were not attributed to the GR. Nonetheless, the receptor has an important role in the light of recent results showing that the GR antagonist, RU486, added to rat hepatoma cells (McARH8994 cells) completely blocks the increase in apo AI mRNA that follows treatment with dexamethasone (Salaadin et al. 1996). In addition, the presence of the receptor alone is not sufficient, as treatment of COS-1 cells, which lack endogenous GR, with dexamethasone did not increase apo AI promoter activity in the presence of transfected GR, suggesting that the receptor acts via an indirect mechanism. Such a mechanism could involve GR activation of a factor that, in turn, binds to site B. Previous data showing that the induction of rat apo AI mRNA by dexamethasone is blocked by cycloheximide, a compound that inhibits protein synthesis, provide additional support for an indirect effect of glucocorticoids (Wong & Oppenheimer 1986). The conclusion based on these observations is that glucocorticoid-stimulated expression of apo AI is mediated by an indirect mechanism, perhaps through enhancement of the actions of transcription factor(s) that in turn activate the promoter.

Site B appears to be the mediator of glucocorticoid activity, and recent studies have shown that it has the potential to bind dimers of the transcription factor, hepatic nuclear factor-3 (HNF-3). In fact, previous studies (Harnish et al. 1994, 1996) have demonstrated that HNF-3 binds to the B-motif in human apo AI DNA and increases transcription of the gene. As glucocorticoid induces site B binding activities (Taylor et al. 1996a), and HNF-3 is one of the transcription factors that binds to this site in the human apo AI promoter, then the stimulatory effect of glucocorticoids on expression of the gene may act via increased abundance or activity of HNF-3β.

Although the preceding summary focuses on the transcriptional effects of the steroid, post-transcriptional effects of glucocorticoid on apo AI gene expression are also possible. If transcription and translation alone are responsible for the steroid-induced increases in apo AI and these sequential processes have reached equilibrium, then the fold induction attributed to each process should be equal. However, apo AI transcription was increased two- to threefold, mRNA levels five- to sixfold and secreted protein three- to fourfold, which raises the possibility that glucocorticoids may have additional post-transcriptional effects that are yet to be elucidated.

Gender-specific steroid hormones

The risk of ischemic heart disease is approximately twofold greater in men than in women (Kalin & Zumoff 1990). In part, this differential in the risk of acquiring the disease is attributed to the actions of the sex steroids (Kalin & Zumoff 1990) on serum lipoprotein concentrations (Godbland et al. 1987). Estrogens increase the concentrations of apo AI protein in females; in contrast, testosterone decreases abundance of HDL in both sexes (Godbland et al. 1987, Sacks et al. 1995) and thus gives rise to a more atherogenic profile. Although the clinical observations...
are straightforward, the mechanisms by which the sex steroids influence the plasma concentrations of apo AI are far from being simple.

The complex nature of estrogen effects arises from the involvement of the hormone in multiple steps of lipoprotein metabolism. For example, clinical studies show that estrogen replacement therapy in post-menopausal women increases apo AI concentrations by suppressing the activity of hepatic triglyceride lipase (HTGL) (Hazzard et al. 1984, Applebaum-Bowden et al. 1989, Colvin et al. 1991, Quintao et al. 1991). In addition, other clinical studies showed that the hormone also increases synthesis of the lipoprotein (Schafer et al. 1983, Sacks et al. 1995). Unlike clinical studies, with their restrictions, animals models make it possible to examine specific steps in apo AI gene expression that are influenced by the hormone. Thus, in support of the stimulatory effects of estrogen on apo AI expression, rodents treated with pharmacologic doses of estrogen were found to have greater concentrations of apo AI mRNA and gene transcription. Although these actions should give rise to higher levels of apo AI protein, the hormone also had post-transcriptional effects that decreased the abundance of the protein (Seishima et al. 1991, Tang et al. 1991, Srivastava et al. 1993). For example, pharmacologic doses of estrogens enhance LDL receptor (LDLR) activity, thereby decreasing apo AI (Windler et al. 1980, Srivastava et al. 1993, Croston et al. 1997). Thus it is evident that estrogens regulate many aspects of apo AI gene expression.

Given the possibility that estrogens affect several steps of apo AI expression, investigators have turned to the use of cell lines to address specific questions. Consistent with the observations in vivo, the exposure of Hep G2 cells to estrogen increases the concentrations of apo AI protein, and this effect is dependent on the amount of hormone (Archer et al. 1986, Tam et al. 1985). In addition, increases in apo AI mRNA correlate well with the increase in the concentrations of the protein (Archer et al. 1986). Further studies in Hep G2 cells showed that this cell line contained two estrogen-binding activities in the nucleus, with different affinities for the hormone. Estrogen induction of apo AI protein and mRNA correlated with the higher-affinity site. The addition of estrogen concentrations beyond those required to saturate the nuclear binding activity had minimal effects on induction of apo AI (Archer et al. 1986, Tam et al. 1986). These results show that estrogen affects apo AI expression via the estrogen receptor by regulating either gene transcription or mRNA stability. Results of recent studies suggest that the steroid influences transcription of the gene (Jin et al. 1998). However, the apo AI promoter does not contain a binding motif for the nuclear estrogen receptor.

The preceding reports suggest that the actions of the hormone on apo AI involve a receptor for estrogen; however, the lack of a recognizable estrogen receptor binding site in apo AI promoter points to an indirect effect of the hormone. In support of the latter idea, recent studies have examined the cis-acting sites and the respective nuclear factors that participate in the actions of the hormone. Results showed that estradiol potentiated the synergistic interactions between two transcription factors, HNF-4 and HNF-3β (Harnish et al. 1996), that bind to tandem cis-acting elements, sites A (Malik & Karathanasis 1996, Murao et al. 1997) and B (Harnish et al. 1994) respectively. The synergism between HNF-4 and HNF-3β is believed to be mediated by factor(s) that influence protein–protein interactions between the two proteins. Recent studies show that the co-repressor, RIP140, could fulfill such a role, and the activity of this factor is modulated by estradiol (Harnish et al. 1998). The current belief is that estradiol-activated endoplasmic reticulum somehow sequesters RIP140 protein, leading to the relief of repression and thus greater levels of apo AI gene transcription.

This section can detail only briefly with the effects of androgens on apo AI expression, because there is less information on this topic compared with that of estrogens. In general, androgens act in a fashion opposite to that of estrogen. For example, androgens upregulate HTGL activity (Larosa 1995) and antagonize the estrogen induction of (low density lipoprotein receptor (LDLR) activity (Croston et al. 1997). Although experiments in animals show that testosterone influences apo AI gene activity (Tang et al. 1991), the results of cell culture studies suggest that the hormone acts by antagonizing the actions of estrogen, and that androgens have no direct effect on gene transcription (Tam et al. 1986).

In summary, the sex hormones influence both catabolic rates and hepatic synthesis of apo AI. The effects on hepatic synthesis are complex and involve the regulation of gene expression at several levels. Estrogen upregulates apo AI promoter activity by influencing the synergy between HNF-3β and HNF-4 at sites B and A respectively. Androgens are believed to block the actions of estrogens.

Retinoic acids

Retinoids are commonly used in the clinical setting to treat a wide range of dermatologic disorders, including nodulocystic acne, rosacea, severe psoriasis, disorders of keratinization, and the prevention
of skin cancers. In humans, the synthetic retinoids, isotretinoin (13-cis retinoic acid) and etretinate (aromatic retinoid) induce significant increases in triglycerides, total and LDL cholesterol, but they have an opposite effect on HDL, leading to concentrations decreased by 10–24% (Zech et al. 1983, Melnik et al. 1987). These retinoid-induced alterations are felt to be detrimental because of a more atherogenic lipid profile that thus exposes the patients to the risk for developing premature cardiovascular disease. However, the changes associated with retinoids were ameliorated by administering fish oil that contained omega-3 fatty acids in conjunction with retinoid therapy. In fact, the authors showed that RXRα binds to radiolabeled site A. These findings appear to contradict the clinical data, in that effects of RA on apo AI transcription should, theoretically, increase the abundance of the protein and, hence, result in greater HDL concentrations. The explanation underlying the discordant effects of RA in clinical studies compared with those observed in animal and in vitro models is not clear. As retinoids are morphogens, the functions of which are most pronounced during development and cellular differentiation, it is conceivable that their stimulating effects on apo AI gene expression are restricted to the fetal or early neonatal period. This may explain why RA has a stimulatory effect in the fetal Hep G2 cells. Alternatively, the in vitro data may reflect accurately the apo AI gene activity at the cellular level in human/animal liver, but increased catabolism of the protein that surpasses the synthesis rate may result in a net reduction in serum apo AI protein and HDL levels. Regardless of the mechanism, it is clear that further studies are needed to test these hypotheses.

ACKNOWLEDGEMENTS

G M Hargrove is the recipient of a fellowship award from the Alberta Heritage Foundation for Medical Research (AHFMR). N C W Wong is the recipient of scientist awards from the Medical Research Council and AHFMR.

REFERENCES

Ashley JM, Lowe NJ, Borok ME & Alfin-Slater RB 1988 Fish oil supplementation results in decreased hypertriglyceridemia in patients with psoriasis undergoing etretinate or acitretin therapy. *Journal of the American Academy of Dermatology* 19 76–82.

Carr FE, Kaseem LL & Wong NCW 1992 Thyroid hormone inhibits TSH gene expression via a position independent negative TRE. *Journal of Biological Chemistry* 267 18689–18694.

Kaste M, Muuronen A, Nikkila EA & Neuvonen PJ 1983
Increase of low serum concentrations of HDL cholesterol in

Kris-Etherton P, Fosmire M, Mela D & Etherton TT 1982
Studies on the etiology of increased tissue cholesterol

Ladas JAA & Karathanasis SK 1991 Regulation of the
apolipoprotein AI gene by ARP-1, a novel member of the

Larosa JC 1995 Androgens and women’s health: genetic and
epidemiologic aspects of lipid metabolism. American Journal of Medicine 98 228–265.

Laudet V 1997 Evolution of the nuclear receptor superfamily:
early diversification from an ancestral orphan receptor.
Journal of Molecular Endocrinology 19 207–226.

Luoma PV 1997 Gene activation, apolipoprotein A-I/high
density lipoprotein, atherosclerosis prevention and longevity.
Pharmacology and Toxicology 81 57–64.

McConnell MV, Vavouranakis I, Wu LL, Vaughan DE &
Ridker PM 1997 Effects of a single, daily alcoholic beverage
on lipid and hemostatic markers of cardiovascular risk.
American Journal of Cardiology 80 1226–1228.

Malkin K & Karathanasis SK 1996 TFIIB-directed
transcriptional activation by the orphan nuclear receptor

Malkonen M & Manninen V 1981 Failure of thyroid hormones
to maintain the normal lipoprotein pattern in rats after

Manttari M, Tenkanen L, Alikoski T & Manninen V 1997
Alcohol and coronary heart disease: the roles of HDL-
cholesterol and smoking. Journal of Internal Medicine 241
157–163.

Mason RL, Hunt HM & Hurxthal L 1930 Blood cholesterol
values in hyperthyroidism and hypothyroidism – their signifi-

Masumoto A, Koga S, Uchida E & Ibayashi H 1988 Effects of insulin, dexamethasone and glucagon on the production of

Melnik BC, Bros U & Plewig G 1987 Evaluation of the
atherogenic risk of isotretinoin-induced and etretinate-
induced alterations of lipoprotein cholesterol metabolism.

Miettinen TA 1968 Mechanism of serum cholesterol reduction
by thyroid hormones in hypothyroidism. Journal of Laboratory and Clinical Medicine 71 537–547.

Miller NE 1987 Associations of high-density lipoprotein
subclasses and apolipoproteins with ischemic heart disease

Miller NE, Laville A & Crook D 1985 Direct evidence that
reverse cholesterol transport is mediated by high-density

Mooradian AD, Shuh GN & Wong NCW 1996 Age-related
changes in the responsiveness of apolipoprotein AI to thyroid

Murao K, Bassyouni H, Taylor AH, Wanke IE & Wong NCW
1997 Hepatocyte nuclear factor 4 inhibits the activity of site

Murray CJL & Lopez AD 1997 Mortality by cause for eight

Muuronen A, Kaste M, Nikkila EA & Tolppanen EM 1985
Mortality from ischaemic heart disease among patients using

Journal of Molecular Endocrinology (1999) 22, 103–111

Naar AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM,
Glass CK & Rosenfeld MG 1991 The orientation and
spacing of core DNA-binding motifs dictate selective

Nagasaki A, Kikuchi T, Kurata K, Masugishi S, Hasegawa T
& Kato S 1994 Vitamin A regulates the expression of
apolipoprotein AI and CIII genes in the rat. Biochemical and Biophysical Research Communications 205 1510–1517.

Nakabayashi HK, Watanabe A, Saito A, Otsuru K, Sawadaishi
K & Tamaoki T 1989 Transcriptional regulation of alpha-
fetoprotein expression by dexamethasone in human hepatoma

Nikkila EA, Kaste M, Ehnholm C & Viikari J 1978 Elevation
of high-density lipoprotein in epileptic patients treated with

O’Hara D, Porte D & Williams RH 1966 The effect of diet and
thyroxin on plasma lipids in myxedema. Metabolism 15 123–134.

Quintao ECR, Nakandakare E, Oliveira HCF, Rocha JC,
Garcia RC & Melo NR 1991 Oral estradiol-17beta raises the
level of plasma high-density lipoprotein in menopausal

Raziel A, Rosenzweig B, Botvincin V, Beigel F, Landau B &
Blum I 1982 The influence of thyroid function on serum
lipid profile. Atherosclerosis 41 321–326.

Reddy MN 1985 Effect of anticonvulsant drugs on plasma total
cholesterol, high-density lipoprotein cholesterol, and
apolipoproteins A and B in children with epilepsy.

Romney JS, Chan J, Carr FE, Mooradian AD & Wong NCW
1992 Identification of the thyroid hormone mRNA Spot 11
as apolipoprotein AI mRNA and effects of the hormone on
the promoter. Molecular Endocrinology 6 943–950.

Rossner S & Rosenqvist U 1974 Serum lipoproteins and the
intravenous fat tolerance test in hypothyroid patients
before and during substitution therapy. Atherosclerosis 20
365–381.

Rottman JN, Widom RL, Nadal-Ginard B, Mahdavi V &
Karathanasis SK 1991 A retinoic acid-responsive element in
the apolipoprotein gene distinguishes between two different
retinoic acid response pathways. Molecular and Cellular
Biology 11 3814–3820.

Sacks FM, Gerhard M & Walsh BW 1995 Sex hormones,

Transcriptional induction of rat liver apolipoprotein A-I
gene expression by glucocorticoids requires the
glucocorticoid receptor and a labile cell-specific protein.

Schaefer EJ, Foster DM, Zech LA, Lindgren FT, Brewer B &
Levy RI 1983 The effects of estrogen administration on
plasma lipoprotein metabolism in premenopausal females.
Journal of Clinical Endocrinology and Metabolism 57 262–266.

Scottoni A, Bhagavan N, Oshiro T & Abe S 1990 Serum
HDL cholesterol concentrations in hypo- and
hyperthyroidism. Clinical Chemistry 26 584–587.

Seishima M, Bigaier CL, Davies SL & Glickman RM 1991
Regulation of hepatic apolipoprotein synthesis in the
17alpha-ethinyl estradiol-treated rat. Journal of Lipid
Research 32 941–951.

transcription factor HNF-4 is a novel member of the steroid
hormone receptor superfamily. Genes and Development 4
2352–2365.

RECEIVED 6 July 1998