Top-cited articles of 2023
Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
Search for other papers by Sangappa B Chadchan in
Google Scholar
PubMed
Search for other papers by Vertika Singh in
Google Scholar
PubMed
Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
Search for other papers by Ramakrishna Kommagani in
Google Scholar
PubMed
The gut microbiome is considered an endocrine organ that can influence distant organs and associated biological pathways. Recent advances suggest that gut microbial homeostasis is essential for reproductive health and that perturbations in the gut microbiota can lead to reproductive pathologies. This review provides an updated overview of the relationship between the gut microbiome and female reproductive diseases. Specifically, we highlight the most recent findings on the gut microbiome in gynecological pathologies including polycystic ovarian syndrome, endometriosis, and endometrial cancer. Most studies revealed associations between altered gut microbial compositions and these reproductive diseases, though few have suggested cause–effect relationships. Future studies should focus on determining the molecular mechanisms underlying associations between gut microbiota and reproductive diseases. Understanding this bidirectional relationship could lead to the development of novel and effective strategies to prevent, diagnose, and treat female reproductive organ-related diseases.
Search for other papers by Xuefeng Peng in
Google Scholar
PubMed
Search for other papers by Fang He in
Google Scholar
PubMed
Search for other papers by Yanling Mao in
Google Scholar
PubMed
Search for other papers by Yihui Lin in
Google Scholar
PubMed
Search for other papers by Jingwen Fang in
Google Scholar
PubMed
Search for other papers by Yangchun Chen in
Google Scholar
PubMed
Search for other papers by Zhichun Sun in
Google Scholar
PubMed
Search for other papers by Yafen Zhuo in
Google Scholar
PubMed
Search for other papers by Jianjia Jiang in
Google Scholar
PubMed
We tried to unveil the clinical significance of miR-146a as a biomarker in M2 macrophage polarization in diabetic wound healing. Initially, we found reduced miR-146a in macrophages of diabetic patients. Next, dual-luciferase assay verified that toll-like receptor 4 (TLR4) was a target gene of miR-146 and was negatively regulated by miR-146. Moreover, after ectopic expression and depletion experiments of miR-146 and/or TLR4, lipopolysaccharide-induced inflammatory response of macrophages was detected. The results revealed that overexpression of miR-146a promoted the M2 macrophage polarization by suppressing the TLR4/nuclear factor-kappaB (NF-κB) axis, so as to enhance wound healing in diabetic ulcers. Further, mouse models with diabetic ulcers were established to investigate the effects of miR-146a on diabetic wound healing in vivo, which revealed that miR-146a promoted wound healing in diabetic ulcers by inhibiting the TLR4/NF-κB axis. In conclusion, we demonstrate that miR-146a can induce M2 macrophage polarization to enhance wound healing in diabetic ulcers by inhibiting the TLR4/NF-κB axis.
Sorbonne Université, CNRS -Institut de Biologie Paris Seine (BIOSIPE), Paris, France
Search for other papers by René Lafont in
Google Scholar
PubMed
Search for other papers by Maria Serova in
Google Scholar
PubMed
Search for other papers by Blaise Didry-Barca in
Google Scholar
PubMed
Search for other papers by Sophie Raynal in
Google Scholar
PubMed
Search for other papers by Louis Guibout in
Google Scholar
PubMed
Search for other papers by Laurence Dinan in
Google Scholar
PubMed
Search for other papers by Stanislas Veillet in
Google Scholar
PubMed
Search for other papers by Mathilde Latil in
Google Scholar
PubMed
Search for other papers by Waly Dioh in
Google Scholar
PubMed
Search for other papers by Pierre J Dilda in
Google Scholar
PubMed
20-Hydroxyecdysone (20E) is a steroid hormone that plays a key role in insect development through nuclear ecdysteroid receptors (EcR/RXR complex) and at least one membrane GPCR receptor (DopEcR). It also displays numerous pharmacological effects in mammals, where its mechanism of action is still debated, involving either an unidentified GPCR or the estrogen ERβ receptor. The goal of this study was to better understand 20E mechanism of action in mammals. A mouse myoblast cell line (C2C12) and the gene expression of myostatin (a negative regulator of muscle growth) were used as a reporter system of anabolic activity. Experiments using protein-bound 20E established the involvement of a membrane receptor. 20E-like effects were also observed with angiotensin(1–7), the endogenous ligand of MAS. Additionally, the effect on myostatin gene expression was abolished by Mas receptor knock-down using siRNA or pharmacological inhibitors. 17β-Estradiol (E2) also inhibited myostatin gene expression, but protein-bound E2 was inactive, and E2 activity was not abolished by angiotensin(1–7) antagonists. A mechanism involving cooperation between the MAS receptor and a membrane-bound palmitoylated estrogen receptor is proposed. The possibility to activate the MAS receptor with a safe steroid molecule is consistent with the pleiotropic pharmacological effects of ecdysteroids in mammals and, indeed, the proposed mechanism may explain the close similarity between the effects of angiotensin(1–7) and 20E. Our findings open up many possible therapeutic developments involving stimulation of the protective arm of the renin–angiotensin–aldosterone system (RAAS) with 20E.
The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
Search for other papers by Linfang Li in
Google Scholar
PubMed
Search for other papers by Xiaoyi Zhang in
Google Scholar
PubMed
Search for other papers by Hangjiang Ren in
Google Scholar
PubMed
Search for other papers by Xiuqing Huang in
Google Scholar
PubMed
Search for other papers by Tao Shen in
Google Scholar
PubMed
Search for other papers by Weiqing Tang in
Google Scholar
PubMed
Search for other papers by Lin Dou in
Google Scholar
PubMed
The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
Search for other papers by Jian Li in
Google Scholar
PubMed
miR-23a-3p and miR-23b-3p are members of the miR-23~27~24-2 superfamily. The role of miR-23a/b-3p in regulating hepatic lipid accumulation is still unknown. Here, we found that increased miR-23a-3p and miR-23b-3p levels were accompanied by an increase in the protein levels of the sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) in the steatotic livers of mice fed a high-fat diet and leptin receptor-deficient type 2 diabetic mice (db/db). Importantly, overexpression of miR-23a/b-3p in Hep1-6 cells elevated the intracellular triglyceride level and upregulated the expression of Srebp-1c and Fas. Taken together, these results suggested that miR-23a/b-3p enhanced mRNA stability by binding the 5'-UTR of Srebp-1c and Fas mRNA, thereby promoting triglyceride accumulation in hepatocytes.
Search for other papers by Feng Zhang in
Google Scholar
PubMed
Search for other papers by Qi Xiong in
Google Scholar
PubMed
Search for other papers by Hu Tao in
Google Scholar
PubMed
Search for other papers by Yang Liu in
Google Scholar
PubMed
Search for other papers by Nian Zhang in
Google Scholar
PubMed
Search for other papers by Xiao-Feng Li in
Google Scholar
PubMed
Search for other papers by Xiao-Jun Suo in
Google Scholar
PubMed
Search for other papers by Qian-Ping Yang in
Google Scholar
PubMed
Search for other papers by Ming-Xin Chen in
Google Scholar
PubMed
Acyl-coenzyme A oxidase 1 (ACOX1) is the first and rate-limiting enzyme in peroxisomal fatty acid β-oxidation of fatty acids. Previous studies have reported that ACOX1 was correlated with the meat quality of livestock, while the role of ACOX1 in intramuscular adipogenesis of beef cattle and its transcriptional and post-transcriptional regulatory mechanisms remain unclear. In the present study, gain-of-function and loss-of-function assays demonstrated that ACOX1 positively regulated the adipogenesis of bovine intramuscular preadipocytes. The C/EBPα-binding sites in the bovine ACOX1 promoter region at −1142 to −1129 bp, −831 to −826 bp, and −303 to −298 bp were identified by promoter deletion analysis and site-directed mutagenesis. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) further showed that these three regions are C/EBPα-binding sites, both in vitro and in vivo, indicating that C/EBPα directly interacts with the bovine ACOX1 promoter and inhibits its transcription. Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the ACOX1 3’UTR (3’UTR). Taken together, our findings suggest that ACOX1, regulated by transcription factor C/EBPα and miR-25-3p, promotes adipogenesis of bovine intramuscular preadipocytes via regulating peroxisomal fatty acid β-oxidation.
Search for other papers by Seiji Fukumoto in
Google Scholar
PubMed
FGF23 is a phosphaturic hormone produced by bone. FGF23 reduces serum phosphate by suppressing proximal tubular phosphate reabsorption and intestinal phosphate absorption. After the identification of FGF23, several kinds of hypophosphatemic rickets/osteomalacia such as X-linked hypophosphatemia (XLH) and tumor-induced osteomalacia (TIO) have been shown to be caused by excessive actions of FGF23. Circulatory FGF23 is high in patients with these hypophosphatemic diseases while FGF23 is rather low in those with chronic hypophosphatemia from other causes such as vitamin D deficiency. These results indicate that FGF23 measurement is useful for the differential diagnosis of hypophosphatemia. Chemiluminescent enzyme immunoassay for FGF23 has been approved for clinical use in Japan. The first choice treatment for patients with TIO is complete removal of responsible tumors. However, it is not always possible to find and completely remove responsible tumors. Phosphate and active vitamin D have been used for patients with hypophosphatemic diseases caused by excessive actions of FGF23 including TIO patients with unresectable tumors. However, these medications have limited effects and several adverse events. The inhibition of excessive FGF23 actions has been considered to be a novel therapy for these hypophosphatemic diseases. Human MAB for FGF23, burosumab, has been shown to improve biochemical abnormalities, roentgenological signs of rickets, growth, fracture healing and impaired mineralization in patients with XLH. Burosumab has been approved in several countries including Europe, North America and Japan. Long-term effects of burosumab need to be addressed in future studies.
Search for other papers by Bryan B Ho in
Google Scholar
PubMed
Search for other papers by Clemens Bergwitz in
Google Scholar
PubMed
Fibroblast growth factor 23 (FGF23) is a phosphotropic hormone that belongs to a subfamily of endocrine FGFs with evolutionarily conserved functions in worms and fruit flies. FAM20C phosphorylates FGF23 post-translationally, targeting it to proteolysis through subtilisin-like proprotein convertase FURIN, resulting in secretion of FGF23 fragments. O-glycosylation of FGF23 through GALNT3 appears to prevent proteolysis, resulting in secretion of biologically active intact FGF23. In the circulation, FGF23 may undergo further processing by plasminogen activators. Crystal structures show that the ectodomain of the cognate FGF23 receptor FGFR1c binds with the ectodomain of the co-receptor alpha-KLOTHO. The KLOTHO-FGFR1c double heterodimer creates a high-affinity binding site for the FGF23 C-terminus. The topology of FGF23 deviates from that of paracrine FGFs, resulting in poor affinity for heparan sulphate, which may explain why FGF23 diffuses freely in the bone matrix to enter the bloodstream following its secretion by cells of osteoblastic lineage. Intact FGF23 signalling by this canonical pathway activates FRS2/RAS/RAF/MEK/ERK1/2. It reduces serum phosphate by inhibiting 1,25-dihydroxyvitamin D synthesis, suppressing intestinal phosphate absorption, and by downregulating the transporters NPT2a and NPT2c, suppressing phosphate reabsorption in the proximal tubules. The physiological role of FGF23 fragments, which may be inhibitory, remains unclear. Pharmacological and genetic activation of canonical FGF23 signalling causes hypophosphatemic disorders, while its inhibition results in hyperphosphatemic disorders. Non-canonical FGF23 signalling through binding and activation of FGFR3/FGFR4/calcineurin/NFAT in an alpha-KLOTHO-independent fashion mainly occurs at extremely elevated circulating FGF23 levels and may contribute to mortality due to cardiovascular disease and left ventricular hypertrophy in chronic kidney disease.
Search for other papers by Mathieu Vernier in
Google Scholar
PubMed
Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, Quebec, Montreal, Canada
Search for other papers by Vincent Giguère in
Google Scholar
PubMed
Aging is a degenerative process that results from the accumulation of cellular and tissue lesions, leading progressively to organ dysfunction and death. Although the biological basis of human aging remains unclear, a large amount of data points to deregulated mitochondrial function as a central regulator of this process. Mounting years of research on aging support the notion that the engendered age-related decline of mitochondria is associated with alterations in key pathways that regulate mitochondrial biology. Particularly, several studies in the last decade have emphasized the importance of the estrogen-related receptor (ERR) family of nuclear receptors, master regulators of mitochondrial function, and their transcriptional coactivators PGC-1s in this context. In this review, we summarize key discoveries implicating the PGC-1/ERR axis in age-associated mitochondrial deregulation and tissue dysfunction. Also, we highlight the pharmacological potential of targeting the PGC-1/ERR axis to alleviate the onset of aging and its adverse effects.
Search for other papers by Excel Rio S Maylem in
Google Scholar
PubMed
Search for other papers by Leon J Spicer in
Google Scholar
PubMed
Search for other papers by Isadora Batalha in
Google Scholar
PubMed
Search for other papers by Luis F Schutz in
Google Scholar
PubMed
Asprosin is a novel fasting-induced protein encoded by fibrillin-1 (FBN1) gene, produced when FBN1 is cleaved by the enzyme furin, and is associated with insulin resistance and polycystic ovarian syndrome in humans. To characterize mRNA abundance of FBN1, FURIN, and the presumed asprosin receptor, olfactory receptor family 4 subfamily M member 1 (OR4M1) in granulosa (GC) and theca cells (TC), and identify hormones regulating FBN1 mRNA expression, GC and TC from small (1–5 mm; SM) and large (>8 mm; LG) follicles were collected from ovaries of heifers obtained at an abattoir and used for real-time PCR gene expression analysis or in vitro evaluation of hormone regulation and asprosin effects. SMTC had 151-fold greater (P < 0.05) FBN1 mRNA abundance than SMGC, and LGTC had 50-fold greater FBN1 mRNA than LGGC. In contrast, OR4M1 mRNA was 81-fold greater in SMGC than LGGC and did not differ from SMTC, but LGTC had 9-fold greater OR4M1 mRNA than LGGC. FURIN mRNA was 2.6-fold greater in SMTC than SMGC, but did not differ among follicular sizes. In cultured TC, leptin, insulin, LH, IGF1 and steroids did not affect FBN1 mRNA, but TGFB1 increased (P < 0.05) FBN1 mRNA by 2.2-fold; EGF and FGFs increased FBN1 mRNA by 1.3- to 1.5-fold. Asprosin enhanced LH-induced TC androstenedione production, reduced IGF1-induced TC proliferation, and had no effect on progesterone production. Developmental regulation of FBN1, FURIN and OR4M1 along with direct effects of asprosin on TC suggests that asprosin may be a novel regulator of ovarian follicular function.