Browse

You are looking at 1 - 10 of 2,393 items

Restricted access

Mark C Turner, Neil R W Martin, Darren J Player, Richard A Ferguson, Patrick Wheeler, Charlotte J Green, Elizabeth C Akam and Mark P Lewis

Hyperinsulinaemia potentially contributes to insulin resistance in metabolic tissues, such as skeletal muscle. The purpose of these experiments was to characterise glucose uptake, insulin signalling and relevant gene expression in primary human skeletal muscle-derived cells (HMDCs), in response to prolonged insulin exposure (PIE) as a model of hyperinsulinaemia-induced insulin resistance. Differentiated HMDCs from healthy human donors were cultured with or without insulin (100 nM) for 3 days followed by an acute insulin stimulation. HMDCs exposed to PIE were characterised by impaired insulin-stimulated glucose uptake, blunted IRS-1 phosphorylation (Tyr612) and Akt (Ser473) phosphorylation in response to an acute insulin stimulation. Glucose transporter 1 (GLUT1), but not GLUT4, mRNA and protein increased following PIE. The mRNA expression of metabolic (PDK4) and inflammatory markers (TNF-α) was reduced by PIE but did not change lipid (SREBP1 and CD36) or mitochondrial (UCP3) markers. These experiments provide further characterisation of the effects of PIE as a model of hyperinsulinaemia-induced insulin resistance in HMDCs.

Restricted access

Maria K Tsoumpra, Shun Sawatsubashi, Michihiro Imamura, Seiji Fukumoto, Shin’ichi Takeda, Toshio Matsumoto and Yoshitsugu Aoki

The biologically active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (VD3), exerts its tissue-specific actions through binding to its intracellular vitamin D receptor (VDR) which functions as a heterodimer with retinoid X receptor (RXR) to recognize vitamin D response elements (VDRE) and activate target genes. Upregulation of VDR in murine skeletal muscle cells occurs concomitantly with transcriptional regulation of key myogenic factors upon VD3 administration, reinforcing the notion that VD3 exerts beneficial effects on muscle. Herein we elucidated the regulatory role of VD3/VDR axis on the expression of dystrobrevin alpha (DTNA), a member of dystrophin-associated protein complex (DAPC). In C2C12 cells, Dtna and VDR gene and protein expression were upregulated by 1–50 nM of VD3 during all stages of myogenic differentiation. In the dystrophic-derived H2K-mdx52 cells, upregulation of DTNA by VD3 occurred upon co-transfection of VDR and RXR expression vectors. Silencing of MyoD1, an E-box binding myogenic transcription factor, did not alter the VD3-mediated Dtna induction, but Vdr silencing abolished this effect. We also demonstrated that VD3 administration enhanced the muscle-specific Dtna promoter activity in presence of VDR/RXR only. Through site-directed mutagenesis and chromatin immunoprecipitation assays, we have validated a VDRE site in Dtna promoter in myogenic cells. We have thus proved that the positive regulation of Dtna by VD3 observed during in vitro murine myogenic differentiation is VDR mediated and specific. The current study reveals a novel mechanism of VDR-mediated regulation for Dtna, which may be positively explored in treatments aiming to stabilize the DAPC in musculoskeletal diseases.

Restricted access

Belen Brie, Ana Ornstein, Maria Cecilia Ramirez, Isabel Lacau-Mengido and Damasia Becu-Villalobos

Many sex differences in liver gene expression originate in the brain, depend on GH secretion and may underlie sex disparities in hepatic disease. Because epigenetic mechanisms may contribute, we studied promoter methylation and microRNA abundance in the liver, associated with expression of sexual dimorphic genes in mice with selective disruption of the dopamine D2 receptor in neurons (neuroDrd2KO), which decreases hypothalamic Ghrh, pituitary GH, and serum IGFI and in neonatally androgenized female mice which have increased pituitary GH content and serum IGFI. We evaluated mRNA levels of the female predominant genes prolactin receptor (Prlr), alcohol dehydrogenase 1 (Adh1), Cyp2a4, and hepatocyte nuclear transcription factor 6 (Hnf6) and the male predominant gene, Cyp7b1. Female predominant genes had higher mRNA levels compared to males, but lower methylation was only detected in the Prlr and Cyp2a4 female promoters. In neuroDrd2KO mice, sexual dimorphism was lost for all genes; the upregulation (feminization) of Prlr and Cyp2a4 in males correlated with decreased methylation of their promoters, and the downregulation (masculinization) of Hnf-6 mRNA in females correlated inversely with its promoter methylation. Neonatal androgenization of females evoked a loss of sexual dimorphism only for the female predominant Hnf6 and Adh1 genes, but no differences in promoter methylation were found. Finally, mmu-miR-155-5p, predicted to target Cyp7b1 expression, was lower in males in association with higher Cyp7b1 mRNA levels compared to females and was not modified in neuroDrd2KO or TP mice. Our results suggest specific regulation of gene sexually dimorphic expression in the liver by methylation or miRNAs.

Restricted access

Kelly L Short, A Daniel Bird, Bennet K L Seow, Judy Ng, Annie R A McDougall, Megan J Wallace, Stuart B Hooper and Timothy J Cole

Glucocorticoid (GC) signaling via the glucocorticoid receptor (GR) is essential for lung maturation in mammals. Previous studies using global or conditional mouse model knockouts of the GR gene have established that GR-mediated signaling in the interstitial mesenchyme of the fetal lung is critical for normal lung development. Screens for downstream GC-targets in conditional mesenchymal GR deficient mouse lung (GRmesKO) identified Versican (Vcan), an important extracellular matrix component and cell proliferation regulator, as a potential GR-regulated target. We show that, of the five major VCAN isoforms, the VCAN-V1 isoform containing the GAGβ domain is the predominant VCAN isoform in the fetal mouse lung distal mesenchyme at both E16.5 and E18.5, whereas the GAGα-specific VCAN-V2 isoform was only localized to the smooth muscle surrounding proximal airways. Both Vcan-V1 mRNA and protein levels were strongly overexpressed in the GRmesKO lung at E18.5. Finally, we investigated the GC regulation of the ECM protease ADAMTS 12 and showed that Adamts 12 mRNA levels were markedly reduced at E18.5 in GRmesKO fetal mouse lung and were strongly induced by both cortisol and betamethasone in cultures of primary rat fetal lung fibroblasts. ADAMTS12 protein immunoreactivity was also strongly increased in the distal lung at E18.5, after dexamethasone treatment in utero. In summary, glucocorticoid signaling via GR represses GAGβ domain-containing VCAN isoforms in distal lung mesenchyme in vivo by repressing Vcan gene expression and, in part, by inducing the ECM protease ADAMTS12, thereby contributing to the control of ECM remodelling and lung cell proliferation prior to birth.

Restricted access

Takumi Nakamura, Kazuki Harada, Taichi Kamiya, Mai Takizawa, Jim Küppers, Kazuo Nakajima, Michael Gütschow, Tetsuya Kitaguchi, Kunihiro Ohta, Tadafumi Kato and Takashi Tsuboi

Glucagon-like peptide-1 (GLP-1), secreted by gastrointestinal enteroendocrine L cells, induces insulin secretion and is important for glucose homeostasis. GLP-1 secretion is induced by various luminal nutrients, including amino acids. Intracellular Ca2+ and cAMP dynamics play an important role in GLP-1 secretion regulation; however, several aspects of the underlying mechanism of amino acid-induced GLP-1 secretion are not well characterized. We investigated the mechanisms underlying the L-glutamine-induced increase in Ca2+ and cAMP intracellular concentrations ([Ca2+]i and [cAMP]i, respectively) in murine enteroendocrine L cell line GLUTag cells. Application of L-glutamine to cells under low extracellular [Na+] conditions, which inhibited the function of the sodium-coupled L-glutamine transporter, did not induce an increase in [Ca2+]i. Application of G protein-coupled receptor family C group 6 member A and calcium-sensing receptor antagonist showed little effect on [Ca2+]i and [cAMP]i; however, taste receptor type 1 member 3 (TAS1R3) antagonist suppressed the increase in [cAMP]i. To elucidate the function of TAS1R3, which forms a heterodimeric umami receptor with taste receptor type 1 member 1 (TAS1R1), we generated TAS1R1 and TAS1R3 mutant GLUTag cells using the CRISPR/Cas9 system. TAS1R1 mutant GLUTag cells exhibited L-glutamine-induced increase in [cAMP]i, whereas some TAS1R3 mutant GLUTag cells did not exhibit L-glutamine-induced increase in [cAMP]i and GLP-1 secretion. These findings suggest that TAS1R3 is important for L-glutamine-induced increase in [cAMP]i and GLP-1 secretion. Thus, TAS1R3 may be coupled with Gs and related to cAMP regulation.

Restricted access

Huixia Li, Zhuanmin Zhang, Dongxu Feng, Lin Xu, Fang Li, Jiali Liu, Xinxin Jin, Zhuang Qian, Xiaomin Kang and Hongzhi Sun

Progranulin (PGRN), a multifunctional protein implicated in embryonic development and immune response, was recently introduced as a novel marker of chronic inflammation related with insulin resistance in obesity and type 2 diabetes mellitus. However, the potential mechanisms of PGRN on insulin signaling pathways are poorly understood. In this study, PGRN mediated the chemotaxis of RAW264.7, impaired insulin action and stimulated production of inflammatory factors in adipocytes, which was accompanied by increased c-Jun N-terminal kinase (JNK) activation and serine phosphorylation of insulin receptor substrate-1. PGRN knockdown partially led to an increase in insulin action as well as a decrease in the JNK activation and extracellular signal-regulated kinase phosphorylation in cells exposed to tumor-necrosis factor-α (TNF-α). Meanwhile, PGRN treatment resulted in an elevation of transcription factor nuclear factor κB (NF-κB) nuclear translocation and acetylation, and increased Il-1b, Il6, Tnf-a expression, whereas NF-κB inhibition reversed PGRN-induced insulin action impairment and inflammatory gene expression. Finally, we showed that sirtuin 1 (SIRT1) expression was downregulated by PGRN treatment, whereas SIRT1 overexpression improved PGRN-induced insulin resistance, NF-κB activation, and inflammatory gene expression. Our results suggest that PGRN regulates adipose tissue inflammation possibly by controlling the gain of proinflammatory transcription in a SIRT1-NF-κB dependent manner in response to inducers such as fatty acids and endoplasmic reticulum stress.

Restricted access

Chikahito Suda, Junichi Yatabe, Midori Yatabe, Miki Yarita and Atsuhiro Ichihara

Elevated soluble (pro)renin receptor (s(P)RR) concentration in maternal blood is associated with gestational hypertension and preeclampsia. Placenta has abundant expression of (P)RR, and the binding of (P)RR with pyruvate dehydrogenase E1 beta subunit (PDHB) is reported to maintain oxidative metabolism. Thus, we hypothesized that placental hypoxia may increase (P)RR, and the increased (P)RR may preserve PDHB expression. Expression and functional analyses were performed using human placental trophoblast cells, mainly JAR cells. (P)RR co-immunoprecipitated and showed co-immunofluorescence with PDHB mainly in the mitochondria. Hypoxia treatment significantly increased intracellular s(P)RR protein expression, but secreted s(P)RR in the culture medium was decreased by hypoxia. Hypoxia treatment did not alter PDHB expression or activity in the basal condition, but when (P)RR was knocked down by siRNA, PDHB protein and activity were reduced by hypoxia. Acetyl-CoA, the product of PDH activity, was significantly reduced by hypoxia treatment with (P)RR siRNA. S(P)RR is generated from full-length PRR when cleaved by specific proteases. Protease inhibitor experiments suggested furin and site 1 protease as the enzymes generating s(P)RR in JAR cells, and only when treated by site 1 protease inhibitor, PF429242, PDHB protein showed a significant trend to decrease with hypoxia. In JAR cells, hypoxia increased intracellular s(P)RR, and (P)RR preserved the expression and function of PDHB during hypoxia. (P)RR may help maintain oxidative metabolism and efficient energy production during placental ischemia in hypertensive disorders of pregnancy.

Restricted access

He-jun Zhao, Xia Jiang, Li-juan Hu, Lei Yang, Lian-dong Deng, Ya-ping Wang and Zhi-peng Ren

This study aimed to determine whether and how the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide affects the chemoresistance and chemosensitivity of pancreatic cancer cells to gemcitabine in vitro and in vivo. The GLP-1R and protein kinase A (PKA) levels were compared between the human pancreatic cancer cell line PANC-1 and the gemcitabine-resistant cell line PANC-GR. The in vitro effects of liraglutide on the cell proliferation and apoptosis as well as the nuclear factor-kappa B NF-κB expression levels of PANC-GR cells were evaluated. In addition, a mouse xenograft model of human pancreatic cancer was established by s.c. injection of PANC-1 cells, and the effects of liraglutide on the chemosensitivity were evaluated in vitro and in vivo. In contrast to PANC-1 cells, PANC-GR cells exhibited lower expression levels of GLP-1R and PKA. Incubation with liraglutide dose dependently inhibited the growth, promoted the apoptosis, and increased the expression of GLP-1R and PKA of PANC-GR cells. Similar effects of liraglutide were observed in another human pancreatic cancer cell line MiaPaCa-2/MiaPaCa-2-GR. Either the GLP-1R antagonist Ex-9, the PKA inhibitor H89, or the NF-κB activator lipopolysaccharide (LPS) could abolish the antiproliferative and proapoptotic activities of liraglutide. Additionally, each of these agents could reverse the expression of NF-κB and ABCG2, which was decreased by liraglutide treatment. Furthermore, liraglutide treatment increased the chemosensitivity of pancreatic cancer cells to gemcitabine, as evidenced by in vitro and in vivo experiments. Thus, GLP-1R agonists are safe and beneficial for patients complicated with pancreatic cancer and diabetes, especially for gemcitabine-resistant pancreatic cancer.

Restricted access

Feng Wang, Lu Wang, Yifeng Wang, Dai Li, Tianpeng Hu, Manyi Sun and Ping Lei

Insulin-like growth factor-1 (IGF-1) improves cognitive function, but its mechanism has not been elucidated. The aim of the study was to explore whether IGF-1 exerted its protective effect on cognitive function and anxiety behavior through the activation of PI3K/Akt/CREB pathway in high-fat diet rats. Neuronal cells HT22 were treated with nothing, IGF-1, IGF-1 + LY294002 or IGF-1 + 666-15. Expressions of p-PI3K, p-Akt and p-CREB were measured using Western blot analysis. Thirty C57BL/6J rats were used. After feeding with high-fat diet, normal saline, PEG-IGF-1, PEG-IGF-1 + LY294002 or PEG-IGF-1 + 666-15 was treated. Cognitive function and anxiety behavior were assessed by Morris water maze and open field test. Several inflammation and oxidative stress biomarkers were measured using recognized methods. Expressions of p-PI3K and p-CREB were also measured using Western blot analysis. After IGF-1 treatment in cells, expressions of p-PI3K, p-Akt and p-CREB were increased. Furthermore, LY294002 downregulated the expressions of these three proteins, but 666-15 only inhibited the expression of CREB in the cells. Compared with the control rats, we found abnormalities of cognitive function and anxiety behavior, inhibition of PI3K/Akt/CREB pathway and increase of oxidative stress and inflammation in high-fat diet rats. After PEG-IGF-1 treatment, the changes in high-fat diet rats were reversed. Then, we blocked the pathway and found that these blockers attenuated the protective effects of PEG-IGF-1. In conclusion, IGF-1 improved cognitive function and anxiety behavior in high-fat diet rats and inhibited inflammation and oxidative stress in hippocampus tissue through the activation of PI3K/Akt/CREB pathway.

Open access

Ting Xiao, Xiuci Liang, Hailan Liu, Feng Zhang, Wen Meng and Fang Hu

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are associated with hepatic steatosis and insulin resistance. Molecular mechanisms underlying ER stress and/or mitochondrial dysfunction that cause metabolic disorders and hepatic steatosis remain to be fully understood. Here, we found that a high fat diet (HFD) or chemically induced ER stress can stimulate mitochondrial stress protein HSP60 expression, impair mitochondrial respiration, and decrease mitochondrial membrane potential in mouse hepatocytes. HSP60 overexpression promotes ER stress and hepatic lipogenic protein expression and impairs insulin signaling in mouse hepatocytes. Mechanistically, HSP60 regulates ER stress-induced hepatic lipogenesis via the mTORC1-SREBP1 signaling pathway. These results suggest that HSP60 is an important ER and mitochondrial stress cross-talking protein and may control ER stress-induced hepatic lipogenesis and insulin resistance.