You are looking at 1 - 10 of 2,359 items for

Restricted access

Yousheng Xu, Yongshun Wang, Jingjin Liu, Wei Cao, Lili Li, Hongwei Du, Enbo Zhan, Ruoxi Zhang, Huimin Liu, Maoen Xu, Tao Chen, Yilin Qu and Bo Yu

The prevalence of obesity is dramatic increased and strongly associated with cardiovascular disease. Adipokines, secreted from adipose tissues, are critical risk factors for the development of cardiomyopathy. Present study aimed to investigate the pathophysiological role of autotaxin in obesity-related cardiomyopathy. In high-fat diet-fed mice, autotaxin was mainly synthesized and secreted from adipocytes. The increased accumulation of cardiac autotaxin was positively associated with cardiac dysfunction in obese mice. Interestingly, specific blockage of adipose tissue autotaxin effectively protected against high-fat diet-induced cardiac structural disorders, left ventricular hypertrophy and dysfunction. Inhibition of autotaxin further improved high-fat diet-induced cardiac fibrosis and mitochondrial dysfunction, including improvement of mitochondrial structure, mass and activities. Our findings demonstrated intervention of adipose tissue biology could influence cardiac modification in obese mice, and adipocyte-derived autotaxin was a potential diagnostic marker and therapeutic target for obesity-related cardiomyopathy.

Restricted access

Ulas Ozkurede, Rishabh Kala, Cameron Johnson, Ziqian Shen, Richard A Miller and Gonzalo G Garcia

It has been hypothesized that transcriptional changes associated with lower mTORC1 activity in mice with reduced levels of growth hormone and insulin-like growth factor 1 are responsible for the longer healthy lifespan of these mutant mice. Cell lines and tissues from these mice show alterations in the levels of many proteins that cannot be explained by corresponding changes in mRNAs. Such post-transcriptional modulation may be the result of preferential mRNA translation by the cap-independent translation of mRNA bearing the N6-methyl-adenosine (m6A) modification. The long-lived endocrine mutants – Snell dwarf, growth hormone receptor deletion and pregnancy-associated plasma protein-A knockout – all show increases in the N6-adenosine-methyltransferases (METTL3/14) that catalyze 6-methylation of adenosine (m6A) in the 5′ UTR region of select mRNAs. In addition, these mice have elevated levels of YTH domain-containing protein 1 (YTHDF1), which recognizes m6A and promotes translation by a cap-independent mechanism. Consistently, multiple proteins that can be translated by the cap-independent mechanism are found to increase in these mice, including DNA repair and mitochondrial stress response proteins, without changes in corresponding mRNA levels. Lastly, a drug that augments cap-independent translation by inhibition of cap-dependent pathways (4EGI-1) was found to elevate levels of the same set of proteins and able to render cells resistant to several forms of in vitro stress. Augmented translation by cap-independent pathways facilitated by m6A modifications may contribute to the stress resistance and increased healthy longevity of mice with diminished GH and IGF-1 signals.

Restricted access

Leandro Nieto, Mariana Fuertes, Josefina Rosmino, Sergio Senin and Eduardo Arzt

Retinoic acid (RA), an active metabolite of Vitamin A, and Bone Morphogenetic Protein 4 (BMP-4) pathways control the transcription of Proopiomelanocortin (POMC), the precursor of ACTH. We describe a novel mechanism by which RA and BMP-4 act together in the context of pituitary corticotroph tumoral cells to regulate POMC transcription. BMP-4 and RA exert a potentiated inhibition on POMC gene expression. This potentiation of the inhibitory action on POMC transcription was blocked by the inhibitory Smads of the BMP-4 pathway (Smad6 and Smad7), a negative regulator of BMP-4 signaling (Tob1) and a blocker of RA pathway (COUP-TFI). AtT-20 corticotrophinoma cells express RA receptors (RARβ, RXRα and RXRγ) which associate with factors of BMP-4 (Smad4 and Smad1) signaling cascade in transcriptional complexes that block POMC transcription. COUP-TFI and Tob1 disrupt these complexes. Deletions and mutations of the POMC promoter and a specific DNA binding assay show that the complexes bind to the RARE site in the POMC promoter. The enhanced inhibitory interaction between RA and BMP-4 pathways occurs also in another relevant corticotroph gene promoter, the Corticotropin-releasing hormone receptor 1 (CRH-R1). The understanding of the molecules that participate in the control of corticotroph gene expression contribute to define more precise targets for the treatment of corticotrophinomas.

Restricted access

Isabel Moscoso, María Cebro-Márquez, Moisés Rodríguez-Mañero, José Ramón González-Juanatey and Ricardo Lage

Irisin is a newly identified adipokine critical to modulate body metabolism, fatty acid metabolism and oxidative stress; recent evidence suggests a cardioprotective role in ischemic injury. Loss of cardiomyocytes during acute myocardial infarction is strongly associated with energetic changes and lipotoxic-induced apoptosis. Our aim was to study FNDC5/irisin’s potential protective role against hypoxia and lipotoxicity, both related with myocardial infarction environment. H9c2 cells were treated with palmitate and/or irisin in normoxic/hypoxic conditions. Cell viability and apoptosis were assessed by MTT assay and annexin V/PI staining. Immunoblotting was used to confirm apoptotic cascade regulation. Irisin counteracts lipotoxic-induced apoptosis in hypoxic cardiomyoblasts by activating Akt signaling pathway suggesting the potential therapeutic role of irisin in ischemic heart disease.

Restricted access

Sasha R Howard

Delayed puberty represents the clinical presentation of a final common pathway for many different pathological mechanisms. In the majority of patients presenting with significantly delayed puberty there is a clear family history of delayed or disturbed puberty, and pubertal timing is known to be a trait with strong heritability. Thus, genetic factors clearly play a key role in determining the timing of puberty, and mutations in certain genes are recognised as responsible for delayed or absent puberty in a minority of patients.

Through the identification of causal genetic defects such as these we have been able to learn a great deal about the pathogenesis of disrupted puberty and its genetic regulation. Firstly, deficiency in key genes that govern the development of the gonadotropin releasing hormone system during fetal development may result in a spectrum of conditions ranging from isolated delayed puberty to absent puberty with anosmia. Secondly, a balance of inhibitory and excitatory signals, acting upstream of GnRH secretion, are vital for the correct timing of puberty. These act to repress the hypothalamic-pituitary-gonadal axis during mid-childhood and allow it to reactivate at puberty, and alterations in this equilibrium can cause delayed (or precocious) puberty. Thirdly, disturbances of energy metabolism inputs to the kisspeptin-GnRH system may also lead to late onset of puberty associated with changes in body mass.

Open access

Yan Zheng and Kevin D Houston

G protein-coupled estrogen receptor 1 (GPER1) is a seven-transmembrane receptor that mediates rapid cell signaling events stimulated by estrogens. While the role that GPER1 has in the modulation of E2-responsive tissues and cancers is well documented, the molecular mechanisms that regulate GPER1 expression are currently not well defined. The recently identified GPER1-dependent mechanism of tamoxifen action in breast cancer cells underscores the importance of identifying mechanisms that regulate GPER1 expression in this cell type. We hypothesized that GPER1 expression in breast cancer cells is sensitive to [D-glucose] and provide data showing increased GPER1 expression when cells were cultured in low [D-glucose]. To determine if the observed accumulation of GPER1 was AMP-activated protein kinase (AMPK)-dependent, small molecule stimulation or inhibition of AMPK was performed. AMPK inhibition decreased GPER1 accumulation in cells grown in low [D-glucose] while the AMPK-activating compound AICAR increased GPER1 accumulation in cells grown in high [D-glucose] media. Additionally, transfection of cells with a plasmid expressing constitutively active AMPK resulted in increased GPER1 accumulation. To determine if [D-glucose]-dependent GPER1 accumulation altered breast cancer cell response to tamoxifen, cells grown in the presence of decreasing [D-glucose] were co-treated with tamoxifen and IGFBP-1 transcription was measured. The results from these experiments reveal that D-glucose deprivation increased GPER1-mediated and tamoxifen-induced IGFBP-1 transcription suggesting that [D-glucose] may increase breast cancer cell sensitivity to tamoxifen. Taken together, these results identify a previously unknown mechanism that regulates GPER1 expression that modifies one aspect tamoxifen action in breast cancer cells.

Restricted access

Trinidad Raices, María Luisa Varela, Casandra M Monzon, María Florencia Correa Torrado, Romina M Pagotto, Marcos Besio Moreno, Carolina Mondillo, Omar Pedro Pignataro and Elba N Pereyra

Testicular Leydig cells (LC) are modulated by several pathways, one of them being the histaminergic system. Heme oxygenase-1 (HO-1), whose upregulation comprises the primary response to oxidative noxae, has a central homeostatic role and might dysregulate LC functions when induced. In this report, we aimed to determine how hemin, an HO-1 inducer, affects LC proliferative capacity and whether HO-1 effects on LC functions are reversible. It was also evaluated if HO-1 interacts in any way with histamine, affecting its regulatory action over LC. MA-10 and R2C cell lines and immature rat LC were used as models. Firstly, we show that after a 24-h incubation with 25 µmol/L hemin, LC proliferation is reversibly impaired by cell cycle arrest in G2/M phase, with no evidence of apoptosis induction. Even though steroid production is abrogated after a 48-h exposure to 25 µmol/L hemin, steroidogenesis can be restored to control levels in a time-dependent manner if the inducer is removed from the medium. Regarding HO-1 and histamine interaction, it is shown that hemin abrogates histamine biphasic effect on steroidogenesis and proliferation. Working with histamine receptors agonists, we elucidated that HO-1 induction affects the regulation mediated by receptor types 1, 2 and 4. In summary, HO-1 induction arrests LC functions, inhibiting steroid production and cell cycle progression. Despite their reversibility, HO-1 actions might negatively influence critical phases of LC development and differentiation affecting their function as well as other androgen-dependent organs. What’s more, we have described a hitherto unknown interaction between HO-1 induction and histamine effects.

Restricted access

Eui Hyun Kim, Geon A Kim, Anukul Taweechaipaisankul, Seok Hee Lee, Qasim Muhammad, Curie Ahn and Byeong Chun Lee

Oxidative stress (OS) is a major problem during in vitro culture of embryos. Numerous studies have shown that melatonin, which is known to have antioxidant properties, prevents occurrence of OS in embryos. However, the molecular mechanisms by which melatonin prevents OS in embryos are still unclear. The present study suggests a possible involvement of the Nuclear factor erythroid 2-related factor 2/Antioxidant responsive element (Nrf2/ARE) signaling pathway, which is one of the prominent signals for OS prevention through Nrf2 activation, connecting melatonin, OS prevention and porcine embryonic development. The aim of this study was to investigate effects of melatonin (10-7 M) on porcine embryonic development via the Nrf2/ARE signaling pathway; brusatol (50 nM; Nrf2 specific inhibitor) was used to validate the mechanism. Treatment of porcine embryo with melatonin significantly increased formation rates of blastocysts and their total cell numbers, and also upregulated the expression of Nrf2/ARE signaling and apoptosis-related genes (MT2, Nrf2, UCHL, HO-1, SOD1, and Bcl-2). Furthermore, the expression of proteins (Nrf2 and MT2) was also upregulated in the melatonin-treated group. Concomitantly, brusatol significantly inhibited these effects, upregulating the expression of Keap1 and Bax, including the expression level of Keap1 protein. These results provide evidences that melatonin prevents OS through Nrf2/ARE signaling pathway in porcine in vitro fertilization (IVF)-derived embryos.

Restricted access

Ji Chen, Chao Li, Wenjie Liu, Bin Yan, Xiaoling Hu and Fengrui Yang

Neuropathic pain represents one of the most common complications associated with diabetes mellitus (DM) that impacts quality of life. Accumulating studies have highlighted the involvement of microRNAs (miRNAs) in DM. Thus, the current study aimed to investigate the roles of microRNA-155 (miR-155) in diabetic peripheral neuropathy (DPN). In vitro DPN models were established using rat Schwann cells (SCs) by treatment with 5.5 mM glucose. Gain- or loss-of-function studies were conducted to determine the effect of miR-155 on Nrf2, cellular function, reactive oxygen species, and inflammation. Rat DNP models were established by streptozotocin injection and damage of sciatic nerve. Next, miR-155 antagomir or agomir was employed to investigate the effects associated with miR-155 on motor and sciatic nerve conduction velocity (MNCV, SNCV), angiogenesis and inflammatory response in vivo. Nrf2 was identified to be a target of miR-155 by dual-luciferase reporter gene assay. Silencing of miR-155 or restoration of Nrf2 promoted cell proliferation, inhibited apoptosis and alleviated inflammation in vitro. miR-155 antagomir-induced inhibition increased MNCV and SNCV, strengthened angiogenesis and alleviated inflammation in DPN rats. Additionally, the effects exerted by miR-155 were reversed when Nrf2 was restored both in vitro and in vivo. Taken together, the key findings of our study provide evidence indicating that miR-155 targeted and suppressed Nrf2 in DPN. miR-155 silencing was found to alleviate sciatic nerve injury in DPN, highlighting its potential as a therapeutic target for DPN.

Restricted access

Fabio Arturo Grieco, Andrea Alex Schiavo, Flora Brozzi, Jonas Juan-Mateu, Marco Bugliani, Piero Marchetti and Décio L Eizirik

miRNAs are a class of small non-coding RNAs that regulate gene expression. Type 1 diabetes is an autoimmune disease characterized by insulitis (islets inflammation) and pancreatic beta cell destruction. The pro-inflammatory cytokines interleukin 1 beta (IL1B) and interferon gamma (IFNG) are released during insulitis and trigger endoplasmic reticulum (ER) stress and expression of pro-apoptotic members of the BCL2 protein family in beta cells, thus contributing to their death. The nature of miRNAs that regulate ER stress and beta cell apoptosis remains to be elucidated. We have performed a global miRNA expression profile on cytokine-treated human islets and observed a marked downregulation of miR-211-5p. By real-time PCR and Western blot analysis, we confirmed cytokine-induced changes in the expression of miR-211-5p and the closely related miR-204-5p and downstream ER stress related genes in human beta cells. Blocking of endogenous miRNA-211-5p and miR-204-5p by the same inhibitor (it is not possible to block separately these two miRs) increased human beta cell apoptosis, as measured by Hoechst/propidium Iodide staining and by determination of cleaved caspase-3 activation. Interestingly, miRs-211-5p and 204-5p regulate the expression of several ER stress markers downstream of PERK, particularly the pro-apoptotic protein DDIT3 (also known as CHOP). Blocking CHOP expression by a specific siRNA partially prevented the increased apoptosis observed following miR-211-5p/miR-204-5p inhibition. These observations identify a novel crosstalk between miRNAs, ER stress and beta cell apoptosis in early type 1 diabetes.