Browse

You are looking at 71 - 80 of 2,430 items for

  • All content x
Clear All
Restricted access

Ji Chen, Chao Li, Wenjie Liu, Bin Yan, Xiaoling Hu, and Fengrui Yang

Neuropathic pain represents one of the most common complications associated with diabetes mellitus (DM) that impacts quality of life. Accumulating studies have highlighted the involvement of miRNAs in DM. Thus, the current study aimed to investigate the roles of miR-155 in diabetic peripheral neuropathy (DPN). In vitro DPN models were established using rat Schwann cells (SCs) by treatment with 5.5 mM glucose. Gain- or loss-of-function studies were conducted to determine the effect of miR-155 on Nrf2, cellular function, reactive oxygen species and inflammation. Rat DNP models were established by streptozotocin injection and damage of sciatic nerve. Next, miR-155 antagomir or agomir was employed to investigate the effects associated with miR-155 on motor and sciatic nerve conduction velocity (MNCV, SNCV), angiogenesis and inflammatory response in vivo. Nrf2 was identified to be a target of miR-155 by dual-luciferase reporter gene assay. Silencing of miR-155 or restoration of Nrf2 promoted cell proliferation, inhibited apoptosis and alleviated inflammation in vitro. miR-155 antagomir-induced inhibition increased MNCV and SNCV, strengthened angiogenesis and alleviated inflammation in DPN rats. Additionally, the effects exerted by miR-155 were reversed when Nrf2 was restored both in vitro and in vivo. Taken together, the key findings of our study provide evidence indicating that miR-155 targeted and suppressed Nrf2 in DPN. miR-155 silencing was found to alleviate sciatic nerve injury in DPN, highlighting its potential as a therapeutic target for DPN.

Free access

Caitlyn Nguyen-Ngo, Nanthini Jayabalan, Carlos Salomon, and Martha Lappas

Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for mother and baby. An effective therapeutic that can reduce the incidence of GDM and improve long-term maternal and fetal outcomes is a major research priority, crucially important for public health. A lack of knowledge about the underlying pathophysiology of GDM has hampered the development of such therapeutics. What we do know, however, is that maternal insulin resistance, low-grade inflammation and endothelial cell dysfunction are three central features of pregnancies complicated by GDM. Indeed, data generated over the past decade have implicated a number of candidate regulators of insulin resistance, inflammation and endothelial cell dysfunction in placenta, maternal adipose tissue and skeletal muscle. These include nuclear factor-κB (NF-κB), peroxisome proliferator-activated receptors (PPARs), sirtuins (SIRTs), 5′ AMP-activated protein kinase (AMPK), glycogen synthase kinase 3 (GSK3), PI3K/mTOR, inflammasome and endoplasmic reticulum (ER) stress. In this review, the identification of these as key modulators of GDM will be discussed. The biochemical pathways involved in the formation of these may represent potential sites for intervention that may translate to therapeutic interventions to prevent the development of GDM.

Restricted access

Yefei Pang and Peter Thomas

We have shown progesterone exerts a direct action on vascular smooth muscle cells (VSMCs) to induce relaxation through activation of membrane progesterone receptor alpha (mPRα)-dependent signaling pathways, but information on downstream events is lacking. Progesterone-induced changes in calcium concentrations in human umbilical artery VSMCs through mPRα-dependent signaling pathways and the involvement of Rho/ROCK signaling were investigated. Acute in vitro treatment with progesterone and the selective mPRα agonist 10-ethenyl-19-norprogesterone (Org OD 02-0, 02-0) blocked the rapid prostaglandin F2α-induced calcium increase. This inhibitory progesterone action was prevented by knockdown of mPRα but not by knockdown of the nuclear progesterone receptor, confirming it is mediated through mPRα. The decrease in calcium levels and VSMC relaxation were abolished by treatment with FPL64176 (Ca2+ channel activator), supporting a role for decreased calcium channel activity in this progesterone action. The reduction in calcium was attenuated by pretreatment with pertussis toxin, 8-Bromo-cAMP and forskolin, indicating this progesterone action involves activation of an inhibitory G protein and downregulation of cAMP-dependent signaling. Inhibition of MAPK and Akt signaling with PD98059 and ML-9, respectively, prevented the progesterone-induced calcium concentration decrease and VSMC relaxation. Forskolin decreased progesterone-induced MAPK and Akt phosphorylation which suggests that the cAMP status influences calcium levels indirectly through altering these signaling pathways. Progesterone and 02-0 treatments decreased RhoA activity and ROCK phosphorylation, which suggests that reduced RhoA/ROCK signaling is a component of the mPRα-mediated progesterone actions on VSMCs. The results suggest that progesterone induces VSMC relaxation by reducing cellular calcium levels through mPRα-induced alterations in multiple signaling pathways.

Restricted access

Guoqing Lei, Linxi Chen, Miao Peng, Bolin Zeng, Qiaoxi Yang, Hening Zhai, and Geyang Xu

GLP-1 is a potent glucose-dependent insulinotropic hormone derived from intestinal L cells. Inflammatory Interleukin-27 (IL-27), a pleiotropic two-chain cytokine, is composed of EBI3 and IL-27 p28 subunits. IL-27 has a protective effect on pancreatic β-cell function. The relationship between IL-27 and GLP-1 is still unexplored. Here we showed interleukin-27-stimulated GLP-1 production via the Stat3-mTOR-dependent mechanism. Interleukin 27 receptor subunit alpha (IL-27 Rα) was detected in ileum and STC-1 cells. Co-localization of EBI3 and GLP-1 was observed not only in mouse ileums but also in human ileums and colons. Third-ventricular infusion of IL-27 increased ileal and plasma GLP-1 in both lean C57BL/6J mice and diet-induced obese and diabetic mice. These changes were associated with a significant increase in Stat3-mTOR activity. Treatment of STC-1 cells with IL-27 contributed to the increments of Stat3-mTOR signaling and GLP-1. Interference of mTOR activity by mTOR siRNA or rapamycin abolished the stimulation of GLP-1 production induced by IL-27 in STC-1 cells. Stat3 siRNA also blocked the stimulus effect of IL-27 on GLP-1. IL-27 increased the interaction of mTOR and Stat3 in STC-1 cells. Our results identify Stat3-mTOR as a critical signaling pathway for the stimulation of GLP-1 induced by IL-27.

Free access

Yousheng Xu, Yongshun Wang, Jingjin Liu, Wei Cao, Lili Li, Hongwei Du, Enbo Zhan, Ruoxi Zhang, Huimin Liu, Maoen Xu, Tao Chen, Yilin Qu, and Bo Yu

The prevalence of obesity is dramatic increased and strongly associated with cardiovascular disease. Adipokines, secreted from adipose tissues, are critical risk factors for the development of cardiomyopathy. Present study aimed to investigate the pathophysiological role of autotaxin in obesity-related cardiomyopathy. In high-fat diet-fed mice, autotaxin was mainly synthesized and secreted from adipocytes. The increased accumulation of cardiac autotaxin was positively associated with cardiac dysfunction in obese mice. Interestingly, specific blockage of adipose tissue autotaxin effectively protected against high-fat diet-induced cardiac structural disorders, left ventricular hypertrophy and dysfunction. Inhibition of autotaxin further improved high-fat diet-induced cardiac fibrosis and mitochondrial dysfunction, including improvement of mitochondrial structure, mass and activities. Our findings demonstrated intervention of adipose tissue biology could influence cardiac modification in obese mice, and adipocyte-derived autotaxin was a potential diagnostic marker and therapeutic target for obesity-related cardiomyopathy.

Free access

Ulas Ozkurede, Rishabh Kala, Cameron Johnson, Ziqian Shen, Richard A Miller, and Gonzalo G Garcia

It has been hypothesized that transcriptional changes associated with lower mTORC1 activity in mice with reduced levels of growth hormone and insulin-like growth factor 1 are responsible for the longer healthy lifespan of these mutant mice. Cell lines and tissues from these mice show alterations in the levels of many proteins that cannot be explained by corresponding changes in mRNAs. Such post-transcriptional modulation may be the result of preferential mRNA translation by the cap-independent translation of mRNA bearing the N6-methyl-adenosine (m6A) modification. The long-lived endocrine mutants – Snell dwarf, growth hormone receptor deletion and pregnancy-associated plasma protein-A knockout – all show increases in the N6-adenosine-methyltransferases (METTL3/14) that catalyze 6-methylation of adenosine (m6A) in the 5′ UTR region of select mRNAs. In addition, these mice have elevated levels of YTH domain-containing protein 1 (YTHDF1), which recognizes m6A and promotes translation by a cap-independent mechanism. Consistently, multiple proteins that can be translated by the cap-independent mechanism are found to increase in these mice, including DNA repair and mitochondrial stress response proteins, without changes in corresponding mRNA levels. Lastly, a drug that augments cap-independent translation by inhibition of cap-dependent pathways (4EGI-1) was found to elevate levels of the same set of proteins and able to render cells resistant to several forms of in vitro stress. Augmented translation by cap-independent pathways facilitated by m6A modifications may contribute to the stress resistance and increased healthy longevity of mice with diminished GH and IGF-1 signals.

Free access

Isabel Moscoso, María Cebro-Márquez, Moisés Rodríguez-Mañero, José Ramón González-Juanatey, and Ricardo Lage

Irisin is a newly identified adipokine critical to modulate body metabolism, fatty acid metabolism and oxidative stress; recent evidence suggests a cardioprotective role in ischemic injury. Loss of cardiomyocytes during acute myocardial infarction is strongly associated with energetic changes and lipotoxic-induced apoptosis. Our aim was to study FNDC5/irisin’s potential protective role against hypoxia and lipotoxicity, both related with myocardial infarction environment. H9c2 cells were treated with palmitate and/or irisin in normoxic/hypoxic conditions. Cell viability and apoptosis were assessed by MTT assay and annexin V/PI staining. Immunoblotting was used to confirm apoptotic cascade regulation. Irisin counteracts lipotoxic-induced apoptosis in hypoxic cardiomyoblasts by activating Akt signaling pathway suggesting the potential therapeutic role of irisin in ischemic heart disease.

Open access

Yan Zheng and Kevin D Houston

G protein-coupled estrogen receptor 1 (GPER1) is a seven-transmembrane receptor that mediates rapid cell signaling events stimulated by estrogens. While the role that GPER1 has in the modulation of E2-responsive tissues and cancers is well documented, the molecular mechanisms that regulate GPER1 expression are currently not well defined. The recently identified GPER1-dependent mechanism of tamoxifen action in breast cancer cells underscores the importance of identifying mechanisms that regulate GPER1 expression in this cell type. We hypothesized that GPER1 expression in breast cancer cells is sensitive to [D-glucose] and provide data showing increased GPER1 expression when cells were cultured in low [D-glucose]. To determine if the observed accumulation of GPER1 was AMP-activated protein kinase (AMPK)-dependent, small molecule stimulation or inhibition of AMPK was performed. AMPK inhibition decreased GPER1 accumulation in cells grown in low [D-glucose] while the AMPK-activating compound AICAR increased GPER1 accumulation in cells grown in high [D-glucose] media. Additionally, transfection of cells with a plasmid expressing constitutively active AMPK resulted in increased GPER1 accumulation. To determine if [D-glucose]-dependent GPER1 accumulation altered breast cancer cell response to tamoxifen, cells grown in the presence of decreasing [D-glucose] were co-treated with tamoxifen and IGFBP-1 transcription was measured. The results from these experiments reveal that D-glucose deprivation increased GPER1-mediated and tamoxifen-induced IGFBP-1 transcription suggesting that [D-glucose] may increase breast cancer cell sensitivity to tamoxifen. Taken together, these results identify a previously unknown mechanism that regulates GPER1 expression that modifies one aspect tamoxifen action in breast cancer cells.

Free access

Fabio Arturo Grieco, Andrea Alex Schiavo, Flora Brozzi, Jonas Juan-Mateu, Marco Bugliani, Piero Marchetti, and Décio L Eizirik

miRNAs are a class of small non-coding RNAs that regulate gene expression. Type 1 diabetes is an autoimmune disease characterized by insulitis (islets inflammation) and pancreatic beta cell destruction. The pro-inflammatory cytokines interleukin 1 beta (IL1B) and interferon gamma (IFNG) are released during insulitis and trigger endoplasmic reticulum (ER) stress and expression of pro-apoptotic members of the BCL2 protein family in beta cells, thus contributing to their death. The nature of miRNAs that regulate ER stress and beta cell apoptosis remains to be elucidated. We have performed a global miRNA expression profile on cytokine-treated human islets and observed a marked downregulation of miR-211-5p. By real-time PCR and Western blot analysis, we confirmed cytokine-induced changes in the expression of miR-211-5p and the closely related miR-204-5p and downstream ER stress related genes in human beta cells. Blocking of endogenous miRNA-211-5p and miR-204-5p by the same inhibitor (it is not possible to block separately these two miRs) increased human beta cell apoptosis, as measured by Hoechst/propidium Iodide staining and by determination of cleaved caspase-3 activation. Interestingly, miRs-211-5p and 204-5p regulate the expression of several ER stress markers downstream of PERK, particularly the pro-apoptotic protein DDIT3 (also known as CHOP). Blocking CHOP expression by a specific siRNA partially prevented the increased apoptosis observed following miR-211-5p/miR-204-5p inhibition. These observations identify a novel crosstalk between miRNAs, ER stress and beta cell apoptosis in early type 1 diabetes.

Free access

Caroline M Gorvin

Twenty-five years have elapsed since the calcium-sensing receptor (CaSR) was first identified in bovine parathyroid and the receptor is now recognized as a fundamental contributor to extracellular Ca2+ (Ca2+ e) homeostasis, regulating parathyroid hormone release and urinary calcium excretion. The CaSR is a class C G-protein-coupled receptor (GPCR) that is functionally active as a homodimer and couples to multiple G-protein subtypes to activate intracellular signalling pathways. The importance of the CaSR in the regulation of Ca2+ e has been highlighted by the identification of >400 different germline loss- and gain-of-function CaSR mutations that give rise to disorders of Ca2+ e homeostasis. CaSR-inactivating mutations cause neonatal severe hyperparathyroidism, characterised by marked hypercalcaemia, skeletal demineralisation and failure to thrive in early infancy; and familial hypocalciuric hypercalcaemia, an often asymptomatic disorder associated with mild-moderately elevated serum calcium concentrations. Activating mutations are associated with autosomal dominant hypocalcaemia, which is occasionally associated with a Bartter’s-like phenotype. Recent elucidation of the CaSR extracellular domain structure enabled the locations of CaSR mutations to be mapped and has revealed clustering in locations important for structural integrity, receptor dimerisation and ligand binding. Moreover, the study of disease-causing mutations has demonstrated that CaSR signals in a biased manner and have revealed specific residues important for receptor activation. This review presents the current understanding of the genetic landscape of CaSR mutations by summarising findings from clinical and functional studies of disease-associated mutations. It concludes with reflections on how recently uncovered signalling pathways may expand the understanding of calcium homeostasis disorders.