Browse

You are looking at 61 - 70 of 2,431 items for

  • All content x
Clear All
Restricted access

Yun-Qing Zhu, Yun Hu, Ke He, Na Li, Peng Jiang, Yu-Qin Pan, Hong Zhou, and Xiao-Ming Mao

The follicles are the minimal functional unit of the thyroid; the morphology and the function of each follicle can vary significantly. However, the reasons for the apparent follicular heterogeneity are poorly understood. Some tissue-resident regulatory T cells (Tregs) have a special phenotype that expresses unique molecules related to local tissue and regulates the tissue functions. The aim of this study was to identify the phenotype of thyroid Tregs and the roles of thyroid Tregs in thyroid physiological regulation. Thyroid tissue and peripheral blood samples were obtained from patients with benign thyroid nodules. Microarray-based gene expression, flow cytometry, immunofluorescence microscopy, and functional analysis of thyroid Tregs were performed. Here, we demonstrated that human thyroid Tregs expressed high level of thyroglobulin (Tg), both gene and protein. The immunofluorescence microscopy of thyroid section showed that the FOXP3+Tg+ cells concentrated in some of the thyroid follicles, at the side of the thyroid follicle. The peripheral blood Tregs expressed minimal levels of Tg, and low levels of Tg could effectively induce peripheral blood Tregs to express Tg, which was independent of thyrotropin simulation. Furthermore, the Tg secreted freely from thyroid Tregs that negatively regulated some thyroid-related genes expression. Our results revealed that the thyroid Tregs was a distinct population of Tregs, which expressed high level of Tg. The thyroid Tregs regulate thyroid function by Tg that is paracrine from the cells.

Restricted access

Giulia Cantini, Martina Trabucco, Alessandra Di Franco, Edoardo Mannucci, and Michaela Luconi

Glucagon-like peptide 1 receptor agonists (GLP-1RAs), which are currently used for the treatment of type 2 diabetes, have recently been proposed as anti-obesity drugs, due to their relevant effects on weight loss. Furthermore, dual agonists for both GLP-1R and glucagon receptor (GCGR) are under investigation for their promising action on adiposity, although underlying mechanisms still need to be clarified. We have recently demonstrated that GLP-1 and liraglutide interfere with the proliferation and differentiation of human adipose precursors, supporting the hypothesis of a peripheral action of GLP-1RA on weight. Here, we investigated glucagon activity in an in vitro model of primary human adipose-derived stem cells (ASCs). Glucagon significantly inhibited ASC proliferation in a dose- and time-dependent manner, as evaluated by cell count and thymidine incorporation. When added during in vitro-induced adipogenesis, glucagon significantly reduced adipocyte differentiation, as demonstrated by the evaluation of intracellular fat content and quantitative expression of early and mature adipocyte markers (PPARγ and FABP4, HSL). Notably, the inhibitory effect of glucagon on cell proliferation and adipogenesis was reversed by specific GLP-1R (exendin-9) and GCGR (des-His1-Glu9-glucagon(1–29)) antagonists. The presence of both receptors was demonstrated by Western blot, immunofluorescence and cytofluorimetric analysis of ASCs. In conclusion, we demonstrated a direct inhibitory action of glucagon on the proliferation and differentiation of human adipose precursors, which seems to involve both GLP-1R and GCGR. These findings suggest that the adipose stem compartment is a novel target of glucagon, possibly contributing to the weight loss obtained in vivo with dual GLP-1R/glucagon agonists.

Restricted access

O.R. Vaughan, T.L. Powell, and T. Jansson

Excess maternal glucocorticoids reduce placental amino acid transport and fetal growth, but whether these effects are mediated directly on the syncytiotrophoblast remains unknown. We hypothesised that glucocorticoids inhibit mechanistic target of rapamycin (mTOR) signaling and insulin-stimulated System A amino acid transport activity in primary human trophoblast (PHT) cells. Syncytialised PHTs, isolated from term placentas (n = 15), were treated with either cortisol (1 μM) or dexamethasone (1 μM), ± insulin (1 nM) for 24 h. Compared to vehicle, dexamethasone increased mRNA expression, but not protein abundance of the mTOR suppressor, regulated in development and DNA damage response 1 (REDD1). Dexamethasone enhanced insulin receptor abundance, activated mTOR complex 1 and 2 signaling and stimulated System A activity, measured by Na+-dependent 14C-methylaminoisobutyric acid uptake. Cortisol also activated mTORC1 without significantly altering insulin receptor or mTORC2 read-outs or System A activity. Both glucocorticoids downregulated expression of the glucocorticoid receptor and the System A transporter genes SLC38A1, SLC38A2 and SLC38A4, without altering SNAT1 or SNAT4 protein abundance. Neither cortisol nor dexamethasone affected System L amino acid transport. Insulin further enhanced mTOR and System A activity, irrespective of glucocorticoid treatment and despite downregulating its own receptor. Contrary to our hypothesis, glucocorticoids do not inhibit mTOR signaling or cause insulin resistance in cultured PHT cells. We speculate that glucocorticoids stimulate System A activity in PHT cells by activating mTOR signaling, which regulates amino acid transporters post-translationally. We conclude that downregulation of placental nutrient transport in vivo following excess maternal glucocorticoids is not mediated by a direct effect on the placenta.

Restricted access

Ilaria Cimmino, Francesco Oriente, Vittoria D’Esposito, Domenico Liguoro, Pasquale Liguoro, Maria Rosaria Ambrosio, Serena Cabaro, Francesco D’Andrea, Francesco Beguinot, Pietro Formisano, and Rossella Valentino

The dramatic rise in obesity and metabolic syndrome can be related, at least in part, to environmental chemical factors such as Bisphenol-A (BPA). In this study, we aimed to understand the effects of low-dose Bisphenol-A on the human mature adipocytes and stromal vascular fraction (SVF) cells, obtained from subcutaneous mammary adipose tissue of overweight female patients, undergoing surgical mammary reduction. 24 and/or 48-h exposure to BPA 0.1 nM elicited significant increase of the inflammatory molecules interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemo-attractant protein 1α (MCP1α) and induced G protein-coupled estrogen receptor 30 (GPR30) levels more than two-fold both in mature adipocytes and SVF cells. These effects were similar to that obtained in the presence of GPR30-specific agonist G1 (100 nM) and were reverted by G15 (1 µM), a GPR30-selective antagonist. As a result of BPA-GPR30 signaling activation, fatty acid synthase (FAS) and leptin mRNA levels were significantly higher upon BPA exposure (P < 0.05) in mature adipocytes, with an opposite effect on adiponectin (ADIPOQ). In addition, an increase in SVF cell proliferation and ERK1/2 phosphorylation, was observed, compared to untreated cells. G15 reverted all of these effects. Interestingly, the action of BPA on SVF cell growth was mimicked by IL-8 treatment and was reverted by incubation with anti-IL8 antibodies. All these data suggest that BPA at 0.1 nM, a ten times lower concentration than environmental exposure, increases the expression of pro-inflammatory cytokines via GPR30 both in mature mammary adipocytes and in SVF cells with a possible involvement of IL-8.

Restricted access

Suzuka Onishi and Kohsuke Kataoka

Insulin plays a central role in glucose homeostasis and is produced exclusively by pancreatic islet β-cells. Insulin gene transcription is regulated by a set of β-cell-enriched transcription factors that bind to cis-regulatory elements within the promoter region, and regulation of the insulin gene promoter is closely linked to β-cell functionality. PIASy, a member of the PIAS family of SUMO E3 ligases, is thought to affect insulin gene transcription, but its mechanism of action is not fully understood. Here, we demonstrate that PIASy interacts with MafA and represses insulin gene promoter activity. MafA is a β-cell-restricted basic leucine-zipper transcriptional activator that binds to the C1 element of the insulin gene promoter. In line with previous studies showing the transactivator domain of MafA is SUMOylated, PIASy enhanced the SUMOylation of MafA. However, a SUMOylation-deficient mutant of MafA was still repressed by PIASy, indicating that this modification is dispensable for repression. Using a series of MafA and PIASy mutants, we found that the basic domain of MafA and the amino-terminal region of PIASy containing the SAP domain are necessary for their interaction. In addition, SUMO-interacting motif 1 (SIM1) at the carboxyl-terminal region of PIASy was required to repress the synergistic transactivation of MafA, Pdx1, and Beta2, transcription factors playing central roles in β-cell differentiation and function. The PINIT and SP-RING domains in the middle region of PIASy were dispensable. These findings suggest that PIASy binds to MafA through the SAP domain and negatively regulates the insulin gene promoter through a novel SIM1-dependent mechanism.

Free access

David Aguinaga, Mireia Casanovas, Rafael Rivas-Santisteban, Irene Reyes-Resina, Gemma Navarro, and Rafael Franco

Addiction and eating disorders involve brain reward circuits. Binge eating predisposes to addictive behavior, while the cessation of exposure to drugs of abuse leads to reward activities, including intake of tasty foods. Cocaine use is associated with a decrease in food intake, with reversal after drug use is discontinued. Exciting new findings show that receptors for the ‘hunger’ hormone, ghrelin, directly interact with the sigma-1 receptor (σ1R), which is a target of cocaine. σ1Rs are key players in regulating dopaminergic neurotransmission and ghrelin-mediated actions. This review focuses on the σ1 receptor as a general neuroendocrine regulator by directly interacting with neuronal G-protein-coupled receptors. This review also covers the early mechanisms by which cocaine binding to σ1 blocks the food-seeking behavior triggered by ghrelin. Those findings appear as fundamental to understand common mechanisms in drug addiction and eating disorders.

Free access

Leandro Nieto, Mariana Fuertes, Josefina Rosmino, Sergio Senin, and Eduardo Arzt

Retinoic acid (RA), an active metabolite of Vitamin A, and bone morphogenetic protein 4 (BMP-4) pathways control the transcription of pro-opiomelanocortin (Pomc), the precursor of ACTH. We describe a novel mechanism by which RA and BMP-4 act together in the context of pituitary corticotroph tumoral cells to regulate Pomc transcription. BMP-4 and RA exert a potentiated inhibition on Pomc gene expression. This potentiation of the inhibitory action on Pomc transcription was blocked by the inhibitory SMADs of the BMP-4 pathway (SMAD6 and SMAD7), a negative regulator of BMP-4 signaling (TOB1) and a blocker of RA pathway (COUP-TFI). AtT-20 corticotrophinoma cells express RA receptors (RARB, RXRA and RXRG) which associate with factors of BMP-4 (SMAD4 and SMAD1) signaling cascade in transcriptional complexes that block Pomc transcription. COUP-TFI and TOB1 disrupt these complexes. Deletions and mutations of the Pomc promoter and a specific DNA-binding assay show that the complexes bind to the RARE site in the Pomc promoter. The enhanced inhibitory interaction between RA and BMP-4 pathways occurs also in another relevant corticotroph gene promoter, the corticotropin-releasing hormone receptor 1 (Crh-r1). The understanding of the molecules that participate in the control of corticotroph gene expression contribute to define more precise targets for the treatment of corticotrophinomas.

Free access

Charit Taneja, Sakshi Gera, Se-Min Kim, Jameel Iqbal, Tony Yuen, and Mone Zaidi

FSH has a primary function in procreation, wherein it induces estrogen production in females and regulates spermatogenesis in males. However, in line with our discoveries over the past decade of non-unitary functions of pituitary hormones, we and others have described hitherto uncharacterized functions of FSH. Through high-affinity receptors, some of which are variants of the ovarian FSH receptor (FSHR), FSH regulates bone mass, adipose tissue function, energy metabolism, and cholesterol production in both sexes. These newly described actions of FSH may indeed be relevant to the pathogenesis of bone loss, dysregulated energy homeostasis, and disordered lipid metabolism that accompany the menopause in females and aging in both genders. We are therefore excited about the possibility of modulating circulating FSH levels toward a therapeutic benefit for a host of age-associated diseases, including osteoporosis, obesity and dyslipidemia, among other future possibilities.

Free access

Sasha R Howard

Delayed puberty represents the clinical presentation of a final common pathway for many different pathological mechanisms. In the majority of patients presenting with significantly delayed puberty, there is a clear family history of delayed or disturbed puberty, and pubertal timing is known to be a trait with strong heritability. Thus, genetic factors clearly play a key role in determining the timing of puberty, and mutations in certain genes are recognised as responsible for delayed or absent puberty in a minority of patients. Through the identification of causal genetic defects such as these we have been able to learn a great deal about the pathogenesis of disrupted puberty and its genetic regulation. Firstly, deficiency in key genes that govern the development of the gonadotropin-releasing hormone system during fetal development may result in a spectrum of conditions ranging from isolated delayed puberty to absent puberty with anosmia. Secondly, a balance of inhibitory and excitatory signals, acting upstream of GnRH secretion, are vital for the correct timing of puberty. These act to repress the hypothalamic–pituitary–gonadal axis during mid-childhood and allow it to reactivate at puberty, and alterations in this equilibrium can cause delayed (or precocious) puberty. Thirdly, disturbances of energy metabolism inputs to the kisspeptin–GnRH system may also lead to late onset of puberty associated with changes in body mass.

Free access

Trinidad Raices, María Luisa Varela, Casandra Margarita Monzón, María Florencia Correa Torrado, Romina María Pagotto, Marcos Besio Moreno, Carolina Mondillo, Omar Pedro Pignataro, and Elba Nora Pereyra

Testicular Leydig cells (LC) are modulated by several pathways, one of them being the histaminergic system. Heme oxygenase-1 (HO-1), whose upregulation comprises the primary response to oxidative noxae, has a central homeostatic role and might dysregulate LC functions when induced. In this report, we aimed to determine how hemin, an HO-1 inducer, affects LC proliferative capacity and whether HO-1 effects on LC functions are reversible. It was also evaluated if HO-1 interacts in any way with histamine, affecting its regulatory action over LC. MA-10 and R2C cell lines and immature rat LC were used as models. Firstly, we show that after a 24-h incubation with 25 µmol/L hemin, LC proliferation is reversibly impaired by cell cycle arrest in G2/M phase, with no evidence of apoptosis induction. Even though steroid production is abrogated after a 48-h exposure to 25 µmol/L hemin, steroidogenesis can be restored to control levels in a time-dependent manner if the inducer is removed from the medium. Regarding HO-1 and histamine interaction, it is shown that hemin abrogates histamine biphasic effect on steroidogenesis and proliferation. Working with histamine receptors agonists, we elucidated that HO-1 induction affects the regulation mediated by receptor types 1, 2 and 4. In summary, HO-1 induction arrests LC functions, inhibiting steroid production and cell cycle progression. Despite their reversibility, HO-1 actions might negatively influence critical phases of LC development and differentiation affecting their function as well as other androgen-dependent organs. What’s more, we have described a hitherto unknown interaction between HO-1 induction and histamine effects.