You are looking at 221 - 230 of 2,438 items for

  • All content x
Clear All
Open access

Farhana Naznin, Koji Toshinai, T M Zaved Waise, Tadashi Okada, Hideyuki Sakoda, and Masamitsu Nakazato

High-fat diet (HFD)-induced metabolic inflammation in the central and peripheral organs contributes to the pathogenesis of obesity. Long-term HFD blunts signaling by ghrelin, a gastric-derived orexigenic peptide, in the vagal afferent nerve via a mechanism involving in situ activation of inflammation. This study was undertaken to investigate whether ghrelin resistance is associated with progressive development of metabolic inflammation. In mice, ghrelin’s orexigenic activity was abolished 2–4 weeks after the commencement of HFD (60% of energy from fat), consistent with the timing of accumulation and activation of macrophages and microglia in the nodose ganglion and hypothalamus. Calorie-restricted weight loss after 12-week HFD feeding restored ghrelin responsiveness and alleviated the upregulation of macrophage/microglia activation markers and inflammatory cytokines. HSP72, a chaperone protein, was upregulated in the hypothalamus of HFD-fed mice, potentially contributing to prevention of irreversible neuron damage. These results demonstrate that ghrelin resistance is reversible following reversal of the HFD-induced inflammation and obesity phenotypes.

Free access

Kanchan Gupta, Vijay Kumar Sirohi, Suparna Kumari, Vinay Shukla, Murli Manohar, Pooja Popli, and Anila Dwivedi

Our earlier studies have demonstrated the cyclic variation and also the altered expression of sorcin in endometrium during early-to-mid-secretory phase transition in women with unexplained infertility. The current study was undertaken to establish the functional role of sorcin in endometrial receptivity in mice. Results indicated that sorcin was highly expressed during the window of implantation in mice and functional blockage of sorcin caused significant reduction in number of implanted blastocyst. The receptivity markers (i.e.Integrin β3, HBEGF, IGFBP1, WNT4 and Cyclin E)) were found to be downregulated in sorcin knocked down uterine horn on day 5 as compared to untreated horn. The reduced attachment and expansion of BeWo spheroids on RL95-2 endometrial cells with sorcin knock down, in in vitro model of endometrium–trophoblast interaction further supported these findings. Uterine sorcin expression pattern during estrous cycle and in delayed implantation mice model suggested the upregulation of sorcin by estrogen. The functional blockade of sorcin induced the intracellular Ca+2 levels in endometrial epithelial cells (EECs), which indicated that altered Ca+2 homeostasis might be responsible for implantation failure. Sorcin silencing led to significant reduction in the expression of angiogenic factor VEGF and its downstream effector molecules i.e. PI3K, Akt and NOS. The migratory and invasive properties of HUVECs were abrogated by anti-VEGF or by adding culture media from sorcin blocked EECs, which indicated that sorcin might mediate angiogenesis during implantation. Taken together, sorcin is involved in the regulation of Ca+2-mediated angiogenesis via VEGF/PI3K/Akt pathway in endometrial cells and plays a crucial role in preparing the endometrium for implantation.

Free access

Huan Zhang, Xiuxia Liu, Shanshan Zhou, Ye Jia, Ying Li, Yuguo Song, Junnan Wang, and Hao Wu

c-Jun N-terminal kinase (JNK) contributes to the pathogenesis of diabetic nephropathy (DN). The JNK inhibitor SP600125 was reported to ameliorate DN. However, the mechanism remained unclear. We previously reported that SP600125 activated nuclear factor erythroid 2-related factor 2 (NRF2), a governor of the cellular antioxidant defense system, in the aortas of the diabetic mice. Given the critical role of NRF2 in preventing DN, the present study aimed to test whether or not NRF2 is required for SP600125’s protection against DN. To test the role of NRF2 in SP600125’s effect, streptozotocin-induced C57BL/6 wild-type (WT) and Nrf2-knockout (KO) diabetic mice were treated in the presence or absence of SP600125, for 24 weeks. To explore the mechanism by which SP600125 activates NRF2, mouse mesangial cells (MMCs) were treated with high glucose (HG), in the presence or absence of either SP600125 or JNK siRNA. SP600125 significantly attenuated the diabetes-induced renal oxidative stress, inflammation, fibrosis, pathological change and dysfunction in the WT, but not the Nrf2 KO mice. SP600125 inactivated JNK, inhibited kelch-like ECH-associated protein 1 expression, preserved NRF2 protein and facilitated its nuclear translocation in the kidneys of the WT mice, the effects of which were similarly produced by either SP600125 or JNK siRNA in HG-treated MMCs. Further, both SP600125 and JNK siRNA alleviated HG-induced mesangial oxidative stress and expression of inflammatory and fibrotic genes. The present study demonstrates that NRF2 is required for SP600125’s protection against DN. SP600125 activates NRF2 possibly via inhibition of JNK-induced Keap1 expression.

Free access

C Folgueira, S Barja-Fernandez, P Gonzalez-Saenz, V Pena-Leon, C Castelao, M Ruiz-Piñon, F F Casanueva, R Nogueiras, and L M Seoane

Uroguanylin (UGN) is a potential target in the fight against obesity. The mature protein is released after enzymatic cleavage from its natural precursor, proUGN. UGN is mostly produced in the gut, and its production is regulated by nutritional status. However, UGN is also produced in other tissues such as the kidneys. In the past, UGN has been widely studied as a natriuretic peptide owing to its involvement in several different pathologies such as heart failure, cancer and gastrointestinal diseases. However, recent studies have suggested that UGN also acts as a regulator of body weight homeostasis because it modulates both food intake and energy expenditure. This ultimately results in a decrease in body weight. This action is mediated by the sympathetic nervous system. Future studies should be directed at the potential effects of UGN agonists in regulating body weight in human obesity.

Free access

Mirel-Adrian Popa, Maria-Cristina Mihai, Alina Constantin, Viorel Şuică, Cătălin Ţucureanu, Raluca Costache, Felicia Antohe, Raghvendra K Dubey, and Maya Simionescu

The use of mesenchymal stem cells (MSC) as a therapeutic tool in cardiovascular diseases is promising. Since androgens exert some beneficial actions on the cardiovascular system, we tested our hypothesis that this hormone could promote MSC-mediated repair processes, also. Cultured MSCs isolated from Wharton’s jelly were exposed to 30 nM dihydrotestosterone (DHT) for 1 or 4 days and the effects of the hormone on their growth/migration/adhesion and the underlying mechanisms were assessed. Results were obtained by real-time cell impedance measurements, and DNA quantification showed that DHT increased MSC proliferation by ~30%. As determined by xCELLigence system, DHT augmented (~2 folds) the migration of MSC toward cardiac tissue slices (at 12 h), and this effect was blocked by flutamide, an androgen receptor (AR) antagonist. Exposure of cells to DHT, upregulated the gene and protein expression of AR, EMMPRIN and MMP-9 and downregulated the expression of MMP-2. DHT significantly induced the release of nitric oxide by MSC (≥2-fold) and flutamide blocked this effect. When MSCs were co-cultured with cardiac slices, immunohistochemical analysis and qRT-PCR showed that the integration of DHT-stimulated MSC was significantly higher than that of in controls. In conclusion, our findings provide the first evidence that DHT promotes MSC growth, migration and integration into the cardiac slices. The modulating effects of DHT were associated with upregulation of ARs and of key molecules known to promote tissue remodeling and angiogenesis. Our findings suggest that priming of MSC with DHT may potentially increase their capability to regenerate cardiac tissue; in vivo studies are needed to confirm our in vitro findings.

Free access

Jinghua Peng and Ling He

Insulin resistance is the hallmark of type 2 diabetes; however, the mechanism underlying the development of insulin resistance is still not completely understood. Previous reports showed that posttranslational modifications of IRS play a critical role in insulin signaling, especially the phosphorylation of IRS by distinct kinases. While it is known that increasing Sirtuin1 deacetylase activity improves insulin sensitivity in the liver, the identity of its counterpart, an acetyl-transferase, remains unknown. Our recent study shows that elevated endotoxin (LPS) levels in the liver of obese mice lead to the induction of the acetyl-transferase P300 through the IRE1-XBP1s pathway. Subsequently, induced P300 impairs insulin signaling by acetylating IRS1 and IRS2 in the insulin signaling pathway. Therefore, the P300 acetyl-transferase activity appears to be a promising therapeutic target for the treatment of diabetes.

Free access

Yingchun Li, Ramón A Lorca, and Emily J Su

Abnormal placental function is well-established as a major cause for poor pregnancy outcome. Placental blood flow within the maternal uteroplacental compartment, the fetoplacental circulation or both is a vital factor in mediating placental function. Impairment in flow in either or both vasculatures is a significant risk factor for adverse pregnancy outcome, potentially impacting maternal well-being, affecting immediate neonatal health and even influencing the long-term health of the infant. Much remains unknown regarding the mechanistic underpinnings of proper placental blood flow. This review highlights the currently recognized molecular and cellular mechanisms in the development of normal uteroplacental and fetoplacental blood flows. Utilizing the entities of preeclampsia and fetal growth restriction as clinical phenotypes that are often evident downstream of abnormal placental blood flow, mechanisms underlying impaired uteroplacental and fetoplacental blood flows are also discussed. Deficiencies in knowledge, which limit the efficacy of clinical care, are also highlighted, underscoring the need for continued research on normal and abnormal placental blood flows.

Free access

Philip Lowry and Russell Woods

An efficient functioning placenta is essential for a healthy pregnancy and yet the way this is achieved has been the subject of much discussion and confusion, particularly with the occurrence of pathological conditions such as preeclampsia, morning sickness and hyperemesis/ptyalism gravidarum. We will attempt to explain the underlying physiology and the potential roles played by the placental tachykinins, neurokinin B and endokinin.

Free access

Yiyan Wang, Xiaoheng Li, Fei Ge, Kaiming Yuan, Zhijian Su, Guimin Wang, Qingquan Lian, and Ren-Shan Ge

Platelet-derived growth factor (PDGF) is one family of growth factors that regulate cell growth and differentiation. Rat Leydig cells express PDGF-β receptor (PDGFRB) during pubertal development. However, the mechanism of PDGF in the regulation of Leydig cell development is unclear. In the present study, rat immature Leydig cells were isolated from the testes of 35-day-old Sprague-Dawley rats and treated with 1 and 10 ng/mL of PDGF-BB. After 24 h of treatment, these cells were harvested for genomics profiling and the medium steroids were measured. 1 and 10 ng/mL PDGF-BB significantly increased androgen production by rat immature Leydig cells. Genomics profiling analysis showed that the expression levels of steroidogenic acute regulatory protein (Star) were increased by 2-fold. Further analysis showed that Fos expression level was increased 2- and 5-fold by 1 and 10 ng/mL PDGF-BB, respectively. In conclusion, PDGF-BB stimulated the differentiation of rat immature Leydig cells via regulating Star.