You are looking at 151 - 160 of 2,436 items for

  • All content x
Clear All
Free access

Hyeon Young Park, Hye Suk Kang, and Seung-Soon Im

Fatty acids are essential nutrients that contribute to several intracellular functions. Fatty acid synthesis and oxidation are known to be regulated by sterol regulatory element-binding proteins (SREBPs), which play a pivotal role in the regulation of cellular triglyceride synthesis and cholesterol biogenesis. Recent studies point to a multifunctional role of SREBPs in the pathogenesis of metabolic diseases, such as obesity, type II diabetes and cancer as well as in immune responses. Notably, fatty acid metabolic intermediates are involved in energy homeostasis and pathophysiological conditions. In particular, intracellular fatty acid metabolism affects an inflammatory response, thereby influencing metabolic diseases. The objective of this review is to summarize the recent advances in our understanding of the dual role of SREBPs in both lipid metabolism and inflammation-mediated metabolic diseases.

Free access

Dominique H Eghlidi, Selva L Luna, Donald I Brown, Vasilios T Garyfallou, Steven G Kohama, and Henryk F Urbanski

In mammals, the suprachiasmatic nucleus (SCN) is the location of a master circadian pacemaker. It receives photic signals from the environment via the retinal hypothalamic tract, which play a key role in synchronizing the body’s endogenously generated circadian rhythms with the 24-h rhythm of the environment. Therefore, it is plausible that age-related changes within the SCN contribute to the etiology of perturbed activity–rest cycles that become prevalent in humans during aging. To test this hypothesis, we used gene arrays and quantitative RT-PCR to profile age-related gene expression changes within the SCN of male rhesus macaques – a pragmatic translational animal model of human aging, which similarly displays an age-related attenuation of daytime activity levels. As expected, the SCN showed high expression of arginine vasopressin, vasoactive intestinal polypeptide, calbindin and nuclear receptor subfamily 1, group D, member 1 (NR1D1) (also known as reverse strand of ERBA (REV-ERBα), both at the mRNA and protein level. However, no obvious difference was detected between the SCNs of young (7–12 years) and old animals (21–26 years), in terms of the expression of core clock genes or genes associated with SCN signaling and neurotransmission. These data demonstrate the resilience of the primate SCN to normal aging, at least at the transcriptional level and, at least in males, suggest that age-related disruption of activity–rest cycles in humans may instead stem from changes within other components of the circadian system, such as desynchronization of subordinate oscillators in other parts of the body.

Free access

Jakob Bondo Hansen, Laila Romagueira Bichara Dos Santos, Ying Liu, Kacey J Prentice, Frederik Teudt, Morten Tonnesen, Jean-Christophe Jonas, Michael B Wheeler, and Thomas Mandrup-Poulsen

Type 2 diabetes (T2D) arises when the pancreatic beta-cell fails to compensate for increased insulin needs due to insulin resistance. Glucolipotoxicity (GLT) has been proposed to induce beta-cell dysfunction in T2D by formation of reactive oxygen species (ROS). Here, we examined if modeling glucolipotoxic conditions by high glucose-high free fatty acid (FFA) exposure (GLT) regulates beta-cell iron transport, by increasing the cytosolic labile iron pool (LIP). In isolated mouse islets, the GLT-induced increase in the LIP catalyzed cytosolic ROS formation and induced apoptosis. We show that GLT-induced ROS production is regulated by an increased LIP associated with elevated expression of genes regulating iron import. Using pharmacological and transgenic approaches, we show that iron reduction and decreased iron import protects from GLT-induced ROS production, prevents impairment of the mitochondrial membrane potential (MMP) and inhibits apoptosis. This study identifies a novel pathway underlying GLT-induced apoptosis involving increased iron import, generation of hydroxyl radicals from hydrogen peroxide through the Fenton reaction in the cytosolic compartment associated with dissipation of the MMP and beta-cell apoptosis.

Free access

Kira Meyerovich, Fernanda Ortis, and Alessandra K Cardozo

The prevalence of diabetes has reached 8.8% in worldwide population and is predicted to increase up to 10.4% by 2040. Thus, there is an urgent need for the development of means to treat or prevent this major disease. Due to its role in inflammatory responses, several studies demonstrated the importance of the transcription factor nuclear factor-κB (NF-κB) in both type 1 diabetes (T1D) and type 2 diabetes (T2D). The two major NF-κB pathways are the canonical and the non-canonical. The later pathway is activated by the NF-κB-inducing kinase (NIK) that triggers p100 processing into p52, which forms with RelB its main dimer. Cytokines mediating the activation of this pathway are present in the serum of T1D and T2D patients. Conversely, limited information is available regarding the role of the alternative pathway on diabetes development and β-cell fate. In the present review, we will briefly describe the involvement of NF-κB on diabetes pathology and discuss new studies indicating an important role for the non-canonical NF-κB activation in β-cell function and survival. The non-canonical NF-κB pathway is emerging as a novel potential target for the development of therapeutic strategies to treat or prevent diabetes.

Free access

Jon Wolf Mueller and Paul A Foster

Open access

Douglas A Gibson, Paul A Foster, Ioannis Simitsidellis, Hilary O D Critchley, Olympia Kelepouri, Frances Collins, and Philippa T K Saunders

In women, establishment of pregnancy is dependent upon ‘fine-tuning’ of the endometrial microenvironment, which is mediated by terminal differentiation (decidualisation) of endometrial stromal fibroblasts (ESFs). We have demonstrated that intracrine steroid metabolism plays a key role in regulating decidualisation and is essential for time-dependent expression of key factors required for endometrial receptivity. The primary aim of the current study was to determine whether sulphated steroids can act as precursors to bioactive sex steroids during decidualisation. We used primary human ESF and a robust in vitro model of decidualisation to assess the expression of genes associated with sulphation, desulphation and transport of sulphated steroids in human ESF as well as the impact of the steroid sulphatase (STS) inhibitor STX64 (Irosustat). We found evidence for an increase in both expression and activity of STS in response to a decidualisation stimulus with abrogation of oestrone biosynthesis and decreased secretion of the decidualisation marker IGFBP1 in the presence of STX64. These results provide novel insight into the contribution of STS to the intracrine regulation of decidualisation.

Free access

Oscar J Pozo, Josep Marcos, Olha Khymenets, Andy Pranata, Christopher C Fitzgerald, Malcolm D McLeod, and Cedric Shackleton

The steroid disulfates (aka bis-sulfates) are a significant but minor fraction of the urinary steroid metabolome that have not been widely studied because major components are not hydrolyzed by the commercial sulfatases commonly used in steroid metabolomics. In early studies, conjugate fractionation followed by hydrolysis using acidified solvent (solvolysis) was used for the indirect detection of this fraction by GC–MS. This paper describes the application of a specific LC–MS/MS method for the direct identification of disulfates in urine, and their use as markers for the prenatal diagnosis of disorders causing reduced estriol production: STSD (steroid sulfatase deficiency), SLOS (Smith-Lemli-Opitz syndrome) and PORD (P450 oxidoreductase deficiency). Disulfates were detected by monitoring a constant ion loss (CIL) from the molecular di-anion. While focused on disulfates, our methodology included an analysis of intact steroid glucuronides and monosulfates because steroidogenic disorder diagnosis usually requires an examination of the complete steroid profile. In the disorders studied, a few individual steroids (as disulfates) were found particularly informative: pregn-5-ene-3β,20S-diol, pregn-5-ene-3β,21-diol (STSD, neonatal PORD) and 5α-pregnane-3β,20S-diol (pregnancy PORD). Authentic steroid disulfates were synthesized for use in this study as aid to characterization. Tentative identification of 5ξ-pregn-7-ene-3ξ,20S-diol and 5ξ-pregn-7-ene-3ξ,17,20S-triol disulfates was also obtained in samples from SLOS affected pregnancies. Seven ratios between the detected metabolites were applied to distinguish the three selected disorders from control samples. Our results show the potential of the direct detection of steroid conjugates in the diagnosis of pathologies related with steroid biosynthesis.

Free access

Carla A Piccinato, Helena Malvezzi, Douglas A Gibson, and Philippa T K Saunders

Endometriosis is an incurable hormone-dependent inflammatory disease that causes chronic pelvic pain and infertility characterized by implantation and growth of endometrial tissue outside the uterine cavity. Symptoms have a major impact on the quality of life of patients resulting in socioeconomic, physical and psychological burdens. Although the immune system and environmental factors may play a role in the aetiology of endometriosis, oestrogen dependency is still considered a hallmark of the disorder. The impact of oestrogens such as oestrone and particularly, oestradiol, on the endometrium or endometriotic lesions may be mediated by steroids originating from ovarian steroidogenesis or local intra-tissue production (intracrinology) dependent upon the expression and activity of enzymes that regulate oestrogen biosynthesis and metabolism. Two key pathways have been implicated: while there is contradictory data on the participation of the aromatase enzyme (encoded by CYP19A1), there is increasing evidence that the steroid sulphatase pathway plays a role in both the aetiology and pathology of endometriosis. In this review, we consider the evidence related to the pathways leading to oestrogen accumulation in endometriotic lesions and how this might inform the development of new therapeutic strategies to treat endometriosis without causing the undesirable side effects of current regimes that suppress ovarian hormone production.

Free access

B Zimmer, L Tenbusch, M C Klymiuk, Y Dezhkam, and G Schuler

In the porcine testis, in addition to estrogen sulfates, the formation of numerous sulfonated neutral hydroxysteroids has been observed. However, their functions and the underlying synthetic pathways are still widely unclear. To obtain further information on their formation in postpubertal boars, the expression of sulfotransferases considered relevant for neutral hydroxysteroids (SULT2A1, SULT2B1) was investigated in the testis and defined segments of the epididymis applying real-time RT-qPCR, Western blot and immunohistochemistry (IHC). Sulfotransferase activities were assessed in tissue homogenates or cytosolic preparations applying dehydroepiandrosterone and pregnenolone as substrates. A high SULT2A1 expression was confirmed in the testis and localized in Leydig cells by IHC. In the epididymis, SULT2A1 expression was virtually confined to the body. SULT2B1 expression was absent or low in the testis but increased significantly along the epididymis. Immunohistochemical observations indicate that both enzymes are secreted into the ductal lumen via an apocrine mechanism. The results from the characterization of expression patterns and activity measurements suggest that SULT2A1 is the prevailing enzyme for the sulfonation of hydroxysteroids in the testis, whereas SULT2B1 may catalyze the formation of sterol sulfates in the epididymis. In order to obtain information on the overall steroidogenic capacity of the porcine epididymis, the expression of important steroidogenic enzymes (CYP11A1, CYP17A1, CYP19, HSD3B1, HSD17B3, SRD5A2) was monitored in the defined epididymal segments applying real-time RT-qPCR. Surprisingly, in addition to a high expression of SRD5A2 in the epididymal head, a substantial expression of HSD3B1 was detected, which increased along the organ.

Free access

G Schuler, Y Dezhkam, L Tenbusch, MC Klymiuk, B Zimmer, and B Hoffmann

Boars exhibit high concentrations of sulfonated estrogens (SE) mainly originating from the testicular-epididymal compartment. Intriguingly, in porcine Leydig cells, sulfonation of estrogens is colocalized with aromatase and steroid sulfatase (STS), indicating that de novo synthesis of unconjugated estrogens (UE), their sulfonation and hydrolysis of SE occur within the same cell type. So far in boars no plausible concept concerning the role of SE has been put forward. To obtain new information on SE formation and hydrolysis, the porcine testicular-epididymal compartment was screened for the expression of the estrogen-specific sulfotransferase SULT1E1 and STS applying real-time RT-qPCR, Western blot and immunohistochemistry. The epididymal head was identified as the major site of SULT1E1 expression, whereas in the testis, it was virtually undetectable. However, SE tissue concentrations are clearly consistent with the testis as the predominant site of estrogen sulfonation. Results from measurements of estrogen sulfotransferase activity indicate that in the epididymis, SULT1E1 is the relevant enzyme, whereas in the testis, estrogens are sulfonated by a different sulfotransferase with a considerably lower affinity. STS expression and activity was high in the testis (Leydig cells, rete testis epithelium) but also present throughout the epididymis. In the epididymis, SULT1E1 and STS were colocalized in the ductal epithelium, and there was evidence for their apocrine secretion into the ductal lumen. The results suggest that in porcine Leydig cells, SE may be produced as a reservoir to support the levels of bioactive UE via the sulfatase pathway during periods of low activity of the pulsatile testicular steroidogenesis.