You are looking at 1 - 10 of 1,710 items for

  • User-accessible content x
Clear All
Restricted access

Norman G Nicolson, Reju Korah and Tobias Carling

Adrenocortical carcinomas are rare tumors with poor prognosis and limited treatment options. Although widely used as in vitro models to test novel therapeutic strategies, the adrenocortical carcinoma-derived cell lines NCI-H295R and SW-13 have only partially been described genetically. Our aim was to characterize the mutational landscape of these cells to improve their experimental utility and map them to clinical subtypes of adrenocortical carcinoma. Genomic DNA from NCI-H295R and SW-13 cells was subjected to whole-exome sequencing. Variants were filtered for non-synonymous mutations and curated for validated adrenocortical and pan-cancer driver gene mutations. Genes mutated in the cell lines were mapped using gene ontology and protein pathway tools to determine signaling effects and compared to mutational and clinical characteristics of 92 adrenocortical carcinoma cases from The Cancer Genome Atlas. NCI-H295R and SW-13 cells carried 1325 and 1836 non-synonymous variants, respectively. Of these, 61 and 76 were known cancer driver genes, of which 32 were shared between cell lines. Variant interaction analyses demonstrated dominant TP53 dysregulation in both cell lines complemented by distinct WNT (NCI-H295R) and chromatin remodeling (SW-13) pathway perturbations. Both cell lines genetically resemble more aggressive adrenocortical carcinomas with worse prognosis, for which development of targeted therapies is most critical. Careful incorporation of the genetic landscapes outlined in this study will further the in vitro utility of these cell lines in testing for novel therapeutic approaches for adrenocortical malignancy.

Free access

Nicola J Smith and Tim R Fenton

The interaction between human papillomaviruses (HPV) and the apolipoprotein-B mRNA-editing catalytic polypeptide-like (APOBEC)3 (A3) genes has garnered increasing attention in recent years, with considerable efforts focused on understanding their apparent roles in both viral editing and in HPV-driven carcinogenesis. Here, we review these developments and highlight several outstanding questions in the field. We consider whether editing of the virus and mutagenesis of the host are linked or whether both are essentially separate events, coincidentally mediated by a common or distinct A3 enzymes. We discuss the viral mechanisms and cellular signalling pathways implicated in A3 induction in virally infected cells and examine which of the A3 enzymes might play the major role in HPV-associated carcinogenesis and in the development of therapeutic resistance. We consider the parallels between A3 induction in HPV-infected cells and what might be causing aberrant A3 activity in HPV-independent cancers such as those arising in the bladder, lung and breast. Finally, we discuss the implications of ongoing A3 activity in tumours under treatment and the therapeutic opportunities that this may present.

Free access

Matias Knuuttila, Esa Hämäläinen and Matti Poutanen

Recent development of gas chromatography and liquid chromatography-tandem mass spectrometry (GC-MS/MS, LC-MS/MS) has provided novel tools to define sex steroid concentrations. These new methods overcome several of the problems associated with immunoassays for sex steroids. With the novel MS-based applications we are now able to measure small concentrations of the steroid hormones reliably and with high accuracy in both body fluids and tissue homogenates. The sensitivity of the tandem mass spectrometry assays allows us also for the first time to reliably measure picomolar or even femtomolar concentrations of estrogens and androgens. Furthermore, due to a high sensitivity and specificity of MS technology, we are also able to measure low concentrations of steroid hormones of interest in the presence of pharmacological concentration of other steroids and structurally closely related compounds. Both of these features are essential for multiple preclinical models for prostate cancer. The MS assays are also valuable for the simultaneous measurement of multiple steroids and their metabolites in small sample volumes in serum and tissue biopsies of prostate cancer patients before and after drug interventions. As a result, novel information about steroid hormone synthesis and metabolic pathways in prostate cancer has been obtained. In our recent studies, we have extensively applied a GC-MS/MS method to study androgen biosynthesis and metabolism in VCaP prostate cancer xenografts in mice. In the present review, we shortly summarize some of the benefits of the GC-MS/MS and novel LC-MS/MS assays, and provide examples of their use in defining novel mechanisms of androgen action in prostate cancer.

Free access

Irene I Lee, Nane C Kuznik, Jaice T Rottenberg, Myles Brown and Andrew C B Cato

Androgens are important determinants of normal and malignant prostate growth. They function by binding to the C-terminal ligand-binding domain (LBD) of the androgen receptor (AR). All clinically approved AR-targeting antiandrogens for prostate cancer therapy function by competing with endogenous androgens. Despite initial robust responses to androgen deprivation therapy, nearly all patients with advanced prostate cancer relapse with lethal castration-resistant prostate cancer (CRPC). Progression to CRPC is associated with ongoing AR signaling, which in part, is due to the expression of constitutively active AR splice variants that contain the N-terminus of the receptor but lack the C-terminus. Currently, there are no approved therapies specifically targeting the AR N-terminus. Current pharmacologic targeting strategies for inhibiting the AR N-terminal region have proven difficult, due to its intrinsically unstructured nature and lack of enzymatic activity. An alternative approach is to target key molecules such as the cochaperone BAG1L that bind to and enhance the activity of the AR AF1. Here, we review recent literature that suggest Bag-1L is a promising target for AR-positive prostate cancer.

Restricted access

Yi Lu, Wang-sheng Wang, Yi-kai Lin, Jiang-wen Lu, Wen-jiao Li, Chu-yue Zhang and Kang Sun

Our previous studies have demonstrated that human fetal membranes are capable of de novo synthesis of serum amyloid A1 (SAA1), an acute phase protein of inflammation, wherein SAA1 may participate in parturition by inducing a number of inflammation mediators including interleukine-1β, interleukine-6 and prostaglandin E2. However, the regulation of SAA1 expression in the fetal membranes remains largely unknown. In the current study, we examined the regulation of SAA1 expression by cortisol, a crucial steroid produced locally in the fetal membranes at parturition, and the interaction between cortisol and SAA1 in the feed-forward induction of SAA1 expression in human amnion fibroblasts. Results showed that cortisol-induced SAA1 expression in a concentration-dependent manner, which was greatly enhanced by SAA1 despite modest induction of SAA1 expression by itself. Mechanism studies revealed that the induction of SAA1 expression by cortisol and SAA1 was blocked by either the transcription factor STAT3 antagonist AZD0530 or siRNA-mediated knockdown of STAT3. Furthermore, cortisol- and SAA1-induced STAT3 phosphorylation in a sequential order with the induction by SAA1 preceding the induction by cortisol. However, combination of cortisol and SAA1 failed to further intensify the phosphorylation of STAT3. Consistently, cortisol and SAA1 increased the enrichment of STAT3 at the SAA1 promoter. Taking together, this study has demonstrated that cortisol and SAA1 can reinforce each other in the induction of SAA1 expression through sequential phosphorylation of STAT3. The enhancement of cortisol-induced SAA1 expression by SAA1 may lead to excessive SAA1 accumulation resulting in parturition-associated inflammation in the fetal membranes.

Open access

Ann Louise Hunter, Natasha Narang, Matthew Baxter, David W Ray and Toryn M Poolman

Chromatin immunoprecipitation (ChIP) is a valuable tool for the endocrine researcher, providing a means to measure the recruitment of hormone-activated nuclear receptors, for example. However, the technique can be challenging to perform and has multiple experimental steps, risking introduction of error at each. The data produced can be challenging to interpret; several different methods are commonly used for normalising data and thus comparing between conditions. Absolute, sensitive quantification of protein-bound DNA is important for correct interpretation of the data. In addition, such quantification can help the investigator in troubleshooting experiments. Here, we outline a ChIP strategy combining droplet digital PCR for accurate quantification with an internal spike-in control for normalisation. This combination strengthens the reliability of ChIP data and allows the operator to optimise their protocol with greater confidence.

Restricted access

Z Ma, D F J Ketelhuth, T Wirström, T Ohki, M J Forteza, H Wang, V Grill, C B Wollheim and A Björklund

Modified lipoproteins can negatively affect beta cell function and survival. However, the mechanisms behind interactions of modified lipoproteins with beta cells – and in particular, relationships to increased uptake – are only partly clarified. By over-expressing the scavenger receptor CD36 (Tet-on), we increased the uptake of fluorescent low-density modified lipoprotein (oxLDL) into insulin-secreting INS-1 cells. The magnitude of uptake followed the degree of CD36 over-expression. CD36 over-expression increased concomitant efflux of 3H-cholesterol in proportion to the cellular contents of 3H-cholesterol. Exposure to concentrations of oxLDL from 20 to 100 µg/mL dose-dependently increased toxicity (evaluated by MTT) as well as apoptosis. However, the increased uptake of oxLDL due to CD36 over-expression did not exert additive effects on oxLDL toxicity – neither on viability, nor on glucose-induced insulin release and cellular content. Reciprocally, blocking CD36 receptors by Sulfo-N-Succinimidyl Oleate decreased the uptake of oxLDL but did not diminish the toxicity. Pancreatic islets of CD36−/− mice displayed reduced uptake of 3H-cholesterol-labeled oxLDL vs wild type but similar toxicity to oxLDL. OxLDL was found to increase the expression of CD36 in islets and INS-1 cells. In summary, given the experimental conditions, our results indicate that (1) increased uptake of oxLDL is not responsible for toxicity of oxLDL, (2) increased efflux of the cholesterol moiety of oxLDL counterbalances, at least in part, increased uptake and (3) oxLDL participates in the regulation of CD36 in pancreatic islets and in INS-1 cells.

Restricted access

Qi Zhang, Qin Zhu, Ruyuan Deng, Feiye Zhou, Linlin Zhang, Shushu Wang, Kecheng Zhu, Xiao Wang, Libin Zhou and Qing Su

Fibroblast growth factor 21 (FGF21) plays an important role in the regulation of lipid and glucose metabolism. MS-275, as a class I-specific histone deacetylase (HDAC) inhibitor, has also been reported to affect energy metabolism. In this current study, we investigated the effects of MS-275 on hepatic FGF21 expression in vitro and in vivo and explored whether cAMP-responsive element-binding protein H (CREBH) was involved in the action of MS-275. Our results showed that MS-275 stimulated hepatic FGF21 mRNA and protein expressions in a dose- and time-dependent manner, as well as FGF21 secretion in primary mouse hepatocytes. Serum concentration and hepatic expression of FGF21 were elevated after injection of MS-275, along with increased expressions of genes involved in fatty acid oxidation and ketogenic production (peroxisome proliferator-activated receptor gammacoactivator1α, PGC-1α; carnitine palmitoyl-transferase 1a, CPT1a; 3-hydroxy-3-methylglutaryl-CoA synthase 2, Hmgcs2) as well as improved blood lipid profile. As a proved transcription factor of FGF21, the expression of CREBH was initiated by MS-275, with increased histone H3 lysine 18 acetylation (H3K18ac) signals and hepatocyte nuclear factor 4 alpha (HNF-4α) recruitment in CREBH promoter. Adenovirus-mediated knockdown of CREBH abolished MS-275-induced hepatic FGF21 and lipid metabolism-related gene expressions. These results suggest that MS-275 induces hepatic FGF21 by H3K18ac-mediated CREBH expression.

Restricted access

Lan Xu, Wenting Wang, Xinyue Zhang, Hanni Ke, Yingying Qin, Li You, Weiping Li, Gang Lu, Wai-Yee Chan, Peter C K Leung, Shidou Zhao and Zi-Jiang Chen

Obesity is a worldwide health problem with rising incidence and results in reproductive difficulties. Elevated saturated free fatty acids (FFAs) in obesity can cause insulin resistance (IR) in peripheral tissues. The high intra-follicular saturated FFAs may also account for IR in ovarian granulosa cells (GCs). In the present study, we investigated the relationship between saturated FFAs and IR in GCs by the use of palmitic acid (PA). We demonstrated that the glucose uptake in cultured GCs and lactate accumulation in the culture medium were stimulated by insulin, but the effects of insulin were attenuated by PA treatment. Besides, insulin-induced phosphorylation of Akt was reduced by PA in a dose- and time-dependent manner. Furthermore, PA increased phosphorylation of JNK and JNK blockage rescued the phosphorylation of Akt which was downregulated by PA. These findings highlighted the negative effect of PA on GCs metabolism and may partially account for the obesity-related reproductive disorders.

Restricted access

Nadia Islam, Ugwoke Sunday Paul, Rana Alhamdan, Juan Hernandez-Medrano, Bruce K Campbell, Peter Marsters and Walid E Maalouf

Ovarian cortical tissue cryopreservation is a relatively novel approach to preserving fertility in women diagnosed with cancer. However, the effects of freezing-thawing are not fully understood, mainly due to the lack of suitable methods to assess tissue’s survival after thawing. Disparities in steroid production have been associated with ovarian failure by disrupting folliculogenesis, ovulation and oocyte apoptosis. Moreover, specific miRNAs, identified in human ovarian follicles, are thought to play a fundamental role in folliculogenesis. In this study, we investigated the possible interplay between the ovarian steroidal production and miRNA expression patterns in spent culture media, as potential non-invasive markers for ovarian tissue damage after cryopreservation. Cryopreservation of ovarian cortical tissue decreased (P < 0.05) both steroid production (oestradiol and progesterone) and expression of miRNA-193b and 320A in spent culture media over 5 days; however, expression of miRNA-24 increased (P < 0.05). The number of primordial follicles was also reduced (P < 0.05) in fresh-cultured and cryopreserved-cultured cortical tissues when compared with fresh tissues. Downregulation of miRNA-193b and miRNA-320A together with upregulation of miRNA-24 could have a synergistic role in cell apoptosis, and consequently leading to reduced oestradiol and progesterone production. Thus, there appears to be an interplay between these miRNAs, ovarian steroid production and cell damage, which can be further explored as novel non-invasive markers of cell damage following cryopreservation.