Aortic Effects of Thyroid Hormone in Male Mice

in Journal of Molecular Endocrinology
Correspondence: Jens Mittag, Email:
Restricted access

It is well established that thyroid hormones are required for cardiovascular functions; however, the molecular mechanisms remain incompletely understood, especially the individual contributions of genomic and non-genomic signalling pathways. In this study, we dissected how thyroid hormones modulate aortic contractility.

To test the immediate effects of thyroid hormones on vasocontractility, we used a wire-myograph to record the contractile response of dissected mouse aortas to the adrenergic agonist phenylephrine in the presence of different doses of T3 (3,3’,5-triiodothyronine). Interestingly, we observed reduced vasoconstriction under low and high T3 concentrations, indicating an inversed U-shape curve with maximal constrictive capacity at euthyroid conditions.

We then tested for possible genomic actions of thyroid hormones on vasocontractility by treating mice for 4 days with 1mg/L thyroxine in drinking water. The study revealed that in contrast to the non-genomic actions the aortas of these animals were hyperresponsive to the contractile stimulus, an effect not observed in endogenously hyperthyroid TR knockout mice. To identify targets of genomic thyroid hormone action, we analyzed aortic gene expression by microarray, revealing several altered genes including the well-known thyroid hormone target gene hairless.

Taken together, the findings demonstrate that thyroid hormones regulate aortic tone through genomic and non-genomic actions, although genomic actions seem to prevail in vivo. Moreover, we identified several novel thyroid hormone target genes that could provide a better understanding of the molecular changes occuring in the hyperthyroid aorta.


An official journal of

Society for Endocrinology