Identification of exchange mechanisms for the regulation of intracellular pH in rat thyroid FRTL-5 cells

in Journal of Molecular Endocrinology
Authors:
A. M. Wood
Search for other papers by A. M. Wood in
Current site
Google Scholar
PubMed
Close
,
G. Warhurst
Search for other papers by G. Warhurst in
Current site
Google Scholar
PubMed
Close
,
S. P. Bidey
Search for other papers by S. P. Bidey in
Current site
Google Scholar
PubMed
Close
,
J. Soden
Search for other papers by J. Soden in
Current site
Google Scholar
PubMed
Close
,
R. Taylor
Search for other papers by R. Taylor in
Current site
Google Scholar
PubMed
Close
, and
W. R. Robertson
Search for other papers by W. R. Robertson in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

ABSTRACT

pH is maintained in cells by plasma membrane exchange mechanisms. In the absence of HCO3− ions, FRTL-5 cells regulate intracellular pH (pHi) by an Na+/H+ antiport but HCO3−-dependent exchangers cannot operate. We have investigated pHi regulation (by microfluorimetry and the pH sensitive dye 2′,7′-bis(2-carboxyethyl)-5(6′)-carboxy-fluorescein) in small groups (five to six cells) of FRTL-5 thyroid cell monolayers held in kREBS—Ringer buffer (pH 7·4) with or without HCO3− ions. The exchangers were investigated with inhibitors (amiloride or its derivative dimethylamiloride for the Na+/H+ antiporter and the stilbene derivative disodium 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS) for HCO3 −-dependent mechanisms), ionic substitution and by NH4 +/NH3 (10mm) acid loading. Basal pHi was lower in the presence (7·3±0·058, mean±s.d., n= 14) than in the absence (7·59±0·078, n=10) of HCO3 ions. In HCO3 −-free media, cells recovered from acid load by 0·34±0·04 pH units in the first 2 min and finally reached a pHi of 7·35±0·06. This recovery was Na+-dependent and blocked by dimethylamiloride during the 15 min following intracellular acidification. In HCO3 -containing media, cells recovered from an acid load at a similar rate, but reached 99 ± 10% (n = 9) of the baseline pH; this recovery was also dependent on Na+ ions. Moreover, although dimethylamiloride and DIDS reduced the rate of recovery to 0·06±0·02 and 0·18±0·04 pH units respectively during the 2-min period, the cells returned to the basal pHi within 15 min. Removal of Na+ from HCO3 -containing media acidified the cells (ΔpH=–0·82±0·05, n=10) within 40 min; this acidification was partially blocked by either amiloride or DIDS. Removal of Cl alkalinized the cells (ΔpH=+0·51 ± 0·06, n=10) after 40 min, and this alkalinization was totally prevented by DIDS. Furthermore, in the absence of Na+ and presence of amiloride, alkalinization was still seen on the removal of Cl, albeit at a diminished rate (i.e. ΔpH = +0·25±0·05, n=8) after 40 min. In conclusion, FRTL-5 cells maintain pHi by two Na+-dependent exchangers, one sensitive to amiloride, the other to DIDS, and a Na+-independent, Cl/HCO3− mechanism.

 

  • Collapse
  • Expand