Expression of the genes for α inhibin, βA inhibin and follistatin in the ovaries of Booroola ewes which were homozygotes or non-carriers of the fecundity gene FecB

in Journal of Molecular Endocrinology
Authors:
J. S. Fleming
Search for other papers by J. S. Fleming in
Current site
Google Scholar
PubMed
Close
,
D. J. Tisdall
Search for other papers by D. J. Tisdall in
Current site
Google Scholar
PubMed
Close
,
P. J. Greenwood
Search for other papers by P. J. Greenwood in
Current site
Google Scholar
PubMed
Close
,
N. L. Hudson
Search for other papers by N. L. Hudson in
Current site
Google Scholar
PubMed
Close
,
D. A. Heath
Search for other papers by D. A. Heath in
Current site
Google Scholar
PubMed
Close
, and
K. P. McNatty
Search for other papers by K. P. McNatty in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

ABSTRACT

Ovine cDNA probes for the α and βA inhibin subunits and for follistatin were used to investigate the mRNA species for these hormones in ovaries obtained during the luteal phase of the oestrous cycle, from Booroola ewes which were homozygous carriers (BB) or non-carriers (++) of the FecB gene. BB ewes had significantly higher concentrations of peripheral FSH and LH immunoreactivity than ++ ewes, but the peripheral inhibin immunoreactivity and ovarian inhibin and progesterone secretion rates were not significantly different between genotypes. No gene-specific differences in the number or size of mRNA transcripts detected by Northern blotting were noted for any of these genes. A single α inhibin mRNA species at 1.5 kb was observed in the follicle RNA from ++ and BB ovaries. Low amounts of α inhibin hybridization were discerned occasionally in + + and BB stroma and also in BB, but not in ++, corpora lutea. The βA inhibin gene was expressed only in the follicles from both ++ and BB ovaries. At least three βA inhibin transcripts were observed; one at 7.5kb and at least two between 1.4 and 5.0kb. The follistatin cDNA probe detected two major transcripts at 2.7 and 1.5 kb and a minor band at 0.5 kb in both follicle and corpora lutea RNA. Densitometry of the Northern blots revealed no significant gene-specific differences in the levels of α inhibin and follistatin gene mRNA transcripts. However, significantly greater amounts of total βA inhibin hybridization were detected in follicle RNA from BB compared with ++ ovaries (P<0.001) and this FecB-specific difference appeared to be associated with the 7.5 kb transcript. We conclude that the Booroola FecB gene does not influence the synthesis of the α inhibin subunit or follistatin during the luteal phase of the oestrous cycle, but may affect inhibin or activin synthesis in the ovaries of FecB carriers, by increasing the transcription or stability of the βA inhibin mRNA species.

 

  • Collapse
  • Expand