H+-Dependent ATPase and K+ channel activities in the rat thyroid cell strain FRTL-5

in Journal of Molecular Endocrinology
Authors:
D. J. Woods
Search for other papers by D. J. Woods in
Current site
Google Scholar
PubMed
Close
,
J. Soden
Search for other papers by J. Soden in
Current site
Google Scholar
PubMed
Close
, and
S. P. Bidey
Search for other papers by S. P. Bidey in
Current site
Google Scholar
PubMed
Close
Restricted access
Rent on DeepDyve

Sign up for journal news

ABSTRACT

Using the fluorescent indicators 2′,7′-bis(2-carboxyethyl)-5′-(6′)-carboxyfluorescein and Oxonol V to monitor intracellular pH (pHi) and cell membrane potential respectively, we have investigated the involvement of H+-dependent ATPase and H+-dependent K+ channels in the recovery of the rat thyroid cell strain FRTL-5 from experimentally induced cytosolic acidification and membrane hyperpolarization events. Following exposure of cells to the weak acid sodium butyrate (24mmol/l) under bicarbonate-free incubation conditions, cytoplasmic acidification was maximal after 3 min, attaining a pHi of 6.42. The subsequent recovery of pHi was unimpaired by the absence of extracellular K+, but was reduced in the presence of the Na+ antagonist amiloride (1 mmol/l), recovering by 0.11±0.003 units, compared with 0.27±0.02 units under amiloride-free conditions. In the presence of the H+-dependent ATPase antagonist N,N′-dicyclohexylcarbodiimide (DCC), the pHi recovery observed in amiloride-containing, K+-free buffer was abolished.

The recovery of pHi in Na+- and K+-containing buffer was accompanied by hyperpolarization of the cell membrane, the later stage of which was reduced after blockade of K+ channels with BaCl2, implying a major contribution of transmembrane K+ movement to such events. In contrast to its attenuating effect on pHi recovery, DCC was ineffective in reducing butyrate-dependent membrane hyperpolarization, suggesting that H+-dependent ATPase may not be a major contributory factor to this event. However, when K+ channels were blocked by addition of BaCl2, addition of DCC abolished the butyrate-induced membrane depolarization. These findings are consistent with the presence of two independent hyperpolarizing transport processes in the FRTL-5 cell membrane which appear to involve (i) a H+-dependent ATPase, activated in response to cytosolic acidification, and allowing partial recovery of pHi in the absence of extracellular Na+ and HCO3 , and (ii) H+-dependent K+ channels which, while contributing to membrane hyperpolarization, may not play a major role in the normal maintenance of pHi.

 

  • Collapse
  • Expand