Glucocorticoids reduce Slc2a2 (GLUT2) gene expression through HNF1 in pancreatic β-cells

in Journal of Molecular Endocrinology
Authors:
Yuka Ono Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan

Search for other papers by Yuka Ono in
Current site
Google Scholar
PubMed
Close
and
Kohsuke Kataoka Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan

Search for other papers by Kohsuke Kataoka in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5685-3908

Correspondence should be addressed to K. Kataoka: kkataoka@yokohama-cu.ac.jp
Restricted access
Rent on DeepDyve

Sign up for journal news

Glucose transporter type 2 (GLUT2), encoded by the Slc2a2 gene, is essential for glucose-stimulated insulin secretion (GSIS) in pancreatic islet β-cells, and low expression of GLUT2 is associated with β-cell dysfunction during the progression of type 2 diabetes in humans and animal models. Glucocorticoids are stress hormones that regulate inflammation and metabolism through the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily, and synthetic glucocorticoids are widely used for the treatment of inflammatory disorders. Prolonged exposure to glucocorticoids induces β-cell dysfunction and diabetes, but the effects of Slc2a2 gene repression in β-cells, if any, and the mechanisms involved remain unclear. In the present study, we measured the expression of GSIS-related genes in the MIN6 β-cell line and found that Slc2a2 mRNA expression was selectively reduced by dexamethasone (DEX), a synthetic glucocorticoid. Using bioinformatics and reporter assays, we identified two β-cell enhancers of the Slc2a2 gene, one within the first intron and another located approximately 40 kb downstream of the transcription start site. The latter enhancer (designated as E3c) was responsible for the DEX-induced repression of the Slc2a2 gene. Of the previously identified β-cell-enriched transcription factors (NEUROD1, MAFA, HNF1α and HNF1β) that activate the E3c enhancer, the transcriptional activity of HNF1α and HNF1β, responsible for maturity-onset diabetes of the young types 3 and 5, respectively, was repressed by DEX and GR. This functional link between HNF1α/HNF1β and GR should help elucidate the mechanism of glucocorticoid-induced β-cell dysfunction and diabetes.

 

  • Collapse
  • Expand
  • Ahlgren U, Jonsson J, Jonsson L, et al. 1998 β-Cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev 12 17631768. (https://doi.org/10.1101/gad.12.12.1763)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aylward A, Okino ML, Benaglio P, et al. 2021 Glucocorticoid signaling in pancreatic islets modulates gene regulatory programs and genetic risk of type 2 diabetes. PLoS Genet 17 e1009531. (https://doi.org/10.1371/journal.pgen.1009531)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ban N, Yamada Y, Someya Y, et al. 2002 Hepatocyte nuclear factor-1α recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes 51 14091418. (https://doi.org/10.2337/diabetes.51.5.1409)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beaupere C, Liboz A, Fève B, et al. 2021 Molecular mechanisms of glucocorticoid-induced insulin resistance. Int J Mol Sci 22 623630. (https://doi.org/10.3390/ijms22020623)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berger C & Zdzieblo D 2020 Glucose transporters in pancreatic islets. Pflugers Arch 472 12491272. (https://doi.org/10.1007/s00424-020-02383-4)

  • Caldenhoven E, Liden J, Wissink S, et al. 1995 Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 9 401412. (https://doi.org/10.1210/me.9.4.401)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen F, Zhu Y, Tang X, et al. 2011 Dynamic regulation of PDX-1 and FoxO1 expression by FoxA2 in dexamethasone-induced pancreatic β-cells dysfunction. Endocrinology 152 17791788. (https://doi.org/10.1210/en.2010-1048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen F, Liu J, Wang Y, et al. 2015 Aldosterone induces clonal β-cell failure through glucocorticoid receptor. Sci Rep 5 13215. (https://doi.org/10.1038/srep13215)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong Y, Poellinger L, Gustafsson , et al. 1988 Regulation of glucocorticoid receptor expression: evidence for transcriptional and posttranslational mechanisms. Mol Endocrinol 2 12561264. (https://doi.org/10.1210/mend-2-12-1256)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong C, Simonett SP, Shin S, et al. 2021 INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants. Genome Biol 22 241. (https://doi.org/10.1186/s13059-021-02450-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ediger BN, Du A, Liu J, et al. 2014 Islet-1 is essential for pancreatic β-cell function. Diabetes 63 42064217. (https://doi.org/10.2337/db14-0096)

  • Emens LA, Landers DW & Moss LG 1992 Hepatocyte nuclear factor 1 alpha is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc Natl Acad Sci U S A 89 73007304. (https://doi.org/10.1073/pnas.89.16.7300)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Esguerra JLS, Ofori JK, Nagao M, et al. 2020 Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA. Mol Metab 32 160167. (https://doi.org/10.1016/j.molmet.2019.12.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fujitani Y, Fujitani S, Boyer DF, et al. 2006 Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev 20 253266. (https://doi.org/10.1101/gad.1360106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Godowski PJ, Rusconi S, Miesfeld R, et al. 1987 Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 325 365368. (https://doi.org/10.1038/325365a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gremlich S, Roduit R & Thorens B 1997 Dexamethasone induces posttranslational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic β cells. J Biol Chem 272 32163222. (https://doi.org/10.1074/jbc.272.6.3216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gulliford MC, Charlton J & Latinovic R 2006 Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care 29 27282729. (https://doi.org/10.2337/dc06-1499)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gutiérrez GD, Bender AS, Cirulli V, et al. 2017 Pancreatic β cell identity requires continual repression of non-β cell programs. J Clin Invest 127 244259. (https://doi.org/10.1172/JCI88017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han S-I, Aramata S, Yasuda K, et al. 2007 MafA stability in pancreatic β cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol Cell Biol 27 65936605. (https://doi.org/10.1128/mcb.01573-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han S-I, Yasuda K & Kataoka K 2011 ATF2 interacts with β-Cell-enriched transcription factors, MafA, Pdx1, and Beta2, and activates insulin gene transcription. J Biol Chem 286 1044910456. (https://doi.org/10.1074/jbc.M110.209510)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han S-I, Tsunekage Y & Kataoka K 2016 Phosphorylation of MafA enhances interaction with Beta2/NeuroD1. Acta Diabetol 53 651660. (https://doi.org/10.1007/s00592-016-0853-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoeck W, Rusconi S & Groner B 1989 Down-regulation and phosphorylation of glucocorticoid receptors in cultured cells. J Biol Chem 264 1439614402. (https://doi.org/10.1016/s0021-9258(18)71692-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoffman BG, Robertson G, Zavaglia B, et al. 2010 Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-HNF4A-and PDX1-bound loci in islets and liver. Genome Res 20 10371051. (https://doi.org/10.1101/gr.104356.109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horikawa Y, Iwasaki N, Hara M, et al. 1997 Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nat Genet 17 384385. (https://doi.org/10.1038/ng1297-384)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hua G, Paulen L & Chambon P 2016 GR SUMOylation and formation of an SUMO-SMRT/ NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc Natl Acad Sci U S A 113 E626E634. (https://doi.org/10.1073/pnas.1522821113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jia S, Ivanov A, Blasevic D, et al. 2015 Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β‐cell function. EMBO J 34 14171433. (https://doi.org/10.15252/embj.201490819)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnson JH, Newgard CB, Milburn JL, et al. 1990 The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 265 65486551. (https://doi.org/10.1016/s0021-9258(19)39181-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Shioda S, Yoshitomo-Nakagawa K, et al. 2001 Maf and Jun nuclear oncoproteins share downstream target genes for inducing cell transformation. J Biol Chem 276 3684936856. (https://doi.org/10.1074/jbc.M102234200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Han S-I, Shioda S, et al. 2002 MafA is a glucose-regulated and pancreatic β-cell-specific transcriptional activator for the insulin gene. J Biol Chem 277 4990349910. (https://doi.org/10.1074/jbc.M206796200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keele GR, Quach BC, Israel JW, et al. 2020 Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation. PLoS Genet 16 e1008537. (https://doi.org/10.1371/journal.pgen.1008537)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kitanaka S, Sato U & Igarashi T 2007 Regulation of human insulin, IGF-I, and multidrug resistance protein 2 promoter activity by hepatocyte nuclear factor (HNF)-1β and HNF-1α and the abnormality of HNF-1β mutants. J Endocrinol 192 141147. (https://doi.org/10.1677/joe.1.07003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langmead B & Salzberg SL 2012 Fast gapped-read alignment with Bowtie 2. Nat Methods 9 357359. (https://doi.org/10.1038/nmeth.1923)

  • Lau HH, Ng NHJ, Loo LSW, et al. 2018 The molecular functions of hepatocyte nuclear factors – in and beyond the liver. J Hepatol 68 10331048. (https://doi.org/10.1016/j.jhep.2017.11.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laukkanen O, Lindström J, Eriksson J, et al. 2005 Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 54 22562260. (https://doi.org/10.2337/diabetes.54.7.2256)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lonard DM & O’Malley BW 2007 Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27 691700. (https://doi.org/10.1016/j.molcel.2007.08.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Low BSJ, Lim CS, Ding SSL, et al. 2021 Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant β cells. Nat Commun 12 3133. (https://doi.org/10.1038/s41467-021-22843-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu TTH, Heyne S, Dror E, et al. 2018 The polycomb-dependent epigenome controls β cell dysfunction, dedifferentiation, and diabetes. Cell Metab 27 12941308.e7. (https://doi.org/10.1016/j.cmet.2018.04.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luther JM, Luo P, Kreger MT, et al. 2011 Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia 54 21522163. (https://doi.org/10.1007/s00125-011-2158-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCulloch LJ, van de Bunt M, Braun M, et al. 2011 GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab 104 648653. (https://doi.org/10.1016/j.ymgme.2011.08.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendel DB, Hansen LP, Graves MK, et al. 1991 HNF-1 alpha and HNF-1 beta (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev 5 10421056. (https://doi.org/10.1101/gad.5.6.1042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miyazaki JI, Araki K, Yamato E, et al. 1990 Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127 126132. (https://doi.org/10.1210/endo-127-1-126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mouse ENCODE Consortium, Stamatoyannopoulos JA, Snyder M, et al. 2012 An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 13 418. (https://doi.org/10.1186/gb-2012-13-8-418)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukaida N, Morita M, Ishikawa Y, et al. 1994 Novel mechanism of glucocorticoid-mediated gene repression: nuclear factor-κB is target for glucocorticoid-mediated interleukin 8 gene repression. J Biol Chem 269 1328913295. (https://doi.org/10.1016/s0021-9258(17)36831-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishigori H, Yamada S, Kohama T, et al. 1998 Frameshift mutation, A263fsinsGG, in the hepatocyte nuclear factor-1beta gene associated with diabetes and renal dysfunction. Diabetes 47 13541355. (https://doi.org/10.2337/diabetes.47.8.1354)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Odom DT, Zizlsperger N, Gordon DB, et al. 2004 Control of pancreas and liver gene expression by HNF transcription factors. Science 303 13781381. (https://doi.org/10.1126/science.1089769)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Okita K, Yang Q, Yamagata K, et al. 1999 Human insulin gene is a target gene of hepatocyte nuclear factor-1α (HNF-1α) and HNF-1β. Biochem Biophys Res Commun 263 566569. (https://doi.org/10.1006/bbrc.1999.1412)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Onishi S & Kataoka K 2019 PIASy is a SUMOylation-independent negative regulator of the insulin transactivator MafA. J Mol Endocrinol 63 297308. (https://doi.org/10.1530/JME-19-0172)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ono Y & Kataoka K 2021 MafA, NeuroD1, and HNF1β synergistically activate the Slc2a2 (Glut2) gene in β-cells. J Mol Endocrinol 67 7182. (https://doi.org/10.1530/JME-20-0339)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orci L, Ravazzola M, Baetens D, et al. 1990a Evidence that down-regulation of beta-cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia. Proc Natl Acad Sci U S A 87 99539957. (https://doi.org/10.1073/pnas.87.24.9953)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Orci L, Unger RH, Ravazzola M, et al. 1990b Reduced beta-cell glucose transporter in new onset diabetic BB rats. J Clin Invest 86 16151622. (https://doi.org/10.1172/JCI114883)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parvin R, Saito-Hakoda A, Shimada H, et al. 2017 Role of NeuroD1 on the negative regulation of Pomc expression by glucocorticoid. PLoS One 12 e0175435. (https://doi.org/10.1371/journal.pone.0175435)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez A, Jansen-Chaparro S, Saigi I, et al. 2014 Glucocorticoid-induced hyperglycemia. J Diabetes 6 920. (https://doi.org/10.1111/1753-0407.12090)

  • Petta I, Dejager L, Ballegeer M, et al. 2016 The interactome of the glucocorticoid receptor and its influence on the actions of glucocorticoids in combatting inflammatory and infectious diseases. Microbiol Mol Biol Rev 80 495522. (https://doi.org/10.1128/mmbr.00064-15)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pivonello R, De Leo M, Vitale P, et al. 2010 Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 92 7781. (https://doi.org/10.1159/000314319)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ratman D, Vanden Berghe W, Dejager L, et al. 2013 How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 380 4154. (https://doi.org/10.1016/j.mce.2012.12.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ray A & Prefontaine KE 1994 Physical association and functional antagonism between the p65 subunit of transcription factor NF-κB and the glucocorticoid receptor. Proc Natl Acad Sci U S A 91 752756. (https://doi.org/10.1073/pnas.91.2.752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Revest JM, Di Blasi F, Kitchener P, et al. 2005 The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nat Neurosci 8 664672. (https://doi.org/10.1038/nn1441)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rey-Campos J, Chouard T, Yaniv M, et al. 1991 vHNF1 is a homeoprotein that activates transcription and forms heterodimers with HNF1. EMBO J 10 14451457. (https://doi.org/10.1002/j.1460-2075.1991.tb07665.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robinson JT, Thorvaldsdóttir H, Winckler W, et al. 2011 Integrative genomics viewer. Nat Biotechnol 29 2426. (https://doi.org/10.1038/nbt.1754)

  • Sansbury FH, Flanagan SE, Houghton JAL, et al. 2012 SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia 55 23812385. (https://doi.org/10.1007/s00125-012-2595-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • dos Santos C, Karagiannopoulos A, Rafacho A, et al. 2022 Glucocorticoids and glucolipotoxicity alter the DNA methylome and function of human EndoC-βH1 cells. Life Sci 307 120854. (https://doi.org/10.1016/j.lfs.2022.120854)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Servitja J-M, Pignatelli M, Maestro , et al. 2009 Hnf1α (MODY3) controls tissue-specific transcriptional programs and exerts opposed effects on cell growth in pancreatic islets and liver. Mol Cell Biol 29 29452959. (https://doi.org/10.1128/mcb.01389-08)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharma S, Jhala US, Johnson T, et al. 1997 Hormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene STF-1. Mol Cell Biol 17 25982604. (https://doi.org/10.1128/mcb.17.5.2598)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen CN, Seckl JR, Slack JMW, et al. 2003 Glucocorticoids suppress β-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J 375 4150. (https://doi.org/10.1042/BJ20030140)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shinozuka Y, Okada M, Oki T, et al. 2001 Altered expression of HES-1, BETA2/NeuroD, and PDX-1 is involved in impaired insulin synthesis induced by glucocorticoids in HIT-T15 cells. Biochem Biophys Res Commun 287 229235. (https://doi.org/10.1006/bbrc.2001.5573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Siersbaek M, Varticovski L, Yang S, et al. 2017 High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss. Sci Rep 7 40220. (https://doi.org/10.1038/srep40220)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Surjit M, Ganti KP, Mukherji A, et al. 2011 Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145 224241. (https://doi.org/10.1016/j.cell.2011.03.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Swisa A, Avrahami D, Eden N, et al. 2017 PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 127 230243. (https://doi.org/10.1172/JCI88015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor BL, Liu FF & Sander M 2013 Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep 4 12621275. (https://doi.org/10.1016/j.celrep.2013.08.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tennant BR, Robertson AG, Kramer M, et al. 2013 Identification and analysis of murine pancreatic islet enhancers. Diabetologia 56 542552. (https://doi.org/10.1007/s00125-012-2797-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorens B, Sarkar HK, Kaback HR, et al. 1988 Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells. Cell 55 281290. (https://doi.org/10.1016/0092-8674(88)90051-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorens B, Weir GC, Leahy JL, et al. 1990 Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats. Proc Natl Acad Sci U S A 87 64926496. (https://doi.org/10.1073/pnas.87.17.6492)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorens B, Wu YJ, Leahy JL, et al. 1992 The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment. J Clin Invest 90 7785. (https://doi.org/10.1172/JCI115858)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tomura H, Nishigori H, Sho K, et al. 1999 Loss-of-function and dominant-negative mechanisms associated with hepatocyte nuclear factor-1β mutations in familial type 2 diabetes mellitus. J Biol Chem 274 1297512978. (https://doi.org/10.1074/jbc.274.19.12975)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uchida S, Watanabe S, Aizawa T, et al. 1979 Polyoncogenicity and insulinoma-inducing ability of BK virus, a human papovavirus, in syrian golden hamsters. J Natl Cancer Inst 63 110126. (https://doi.org/10.1093/jnci/63.1.119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Unger RH 1991 Diabetic hyperglycemia: link to impaired glucose transport in pancreatic β cells. Science 251 12001205. (https://doi.org/10.1126/science.2006409)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Vos A, Heimberg H, Quartier E, et al. 1995 Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest 96 24892495. (https://doi.org/10.1172/JCI118308)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Z & Gleichmann H 1998 GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47 5056. (https://doi.org/10.2337/diab.47.1.50)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Maechler P, Hagenfeldt KA, et al. 1998 Dominant-negative suppression of HNF-1alpha function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic beta-cell line. EMBO J 17 67016713. (https://doi.org/10.1093/emboj/17.22.6701)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Antinozzi PA, Hagenfeldt KA, et al. 2000 Molecular targets of a human HNF1alpha mutation responsible for pancreatic beta-cell dysfunction. EMBO J 19 42574264. (https://doi.org/10.1093/emboj/19.16.4257)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Maechler P, Ritz-Laser B, et al. 2001 Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J Biol Chem 276 2527925286. (https://doi.org/10.1074/jbc.M101233200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Brun T, Kataoka K, et al. 2007 MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia 50 348358. (https://doi.org/10.1007/s00125-006-0490-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamagata K, Oda N, Kaisaki PJ, et al. 1996 Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 384 455458. (https://doi.org/10.1038/384455a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamato E, Tashiro F & Miyazaki J 2013 Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β cell line MIN6. PLoS One 8 e61211. (https://doi.org/10.1371/journal.pone.0061211)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang C, Moriguchi T, Kajihara M, et al. 2005 MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol 25 49694976. (https://doi.org/10.1128/mcb.25.12.4969-4976.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation