This paper forms part of a special collection on the theme of GPCRs. The guest editors for this collection were Caroline Gorvin, Aylin Hanyaloglu, and Davide Calebiro.
Receptor activity-modifying proteins (RAMPs) modulate the expression and activity of numerous G protein-coupled receptors, primarily those within class B1. These receptors have important physiological roles, including the regulation of food intake, energy metabolism, and glucose homeostasis. Dysregulation of these pathways can lead to obesity and diabetes mellitus, which present an ever-expanding global challenge. Whilst the roles of class B1 receptors and their peptide agonists in obesity and diabetes have been investigated, the contribution of RAMPs is less well understood. This review summarises the results of RAMP knockout studies, highlighting the involvement of these proteins in the incidence of disease. It then moves to discuss how receptor, RAMP, and agonist expression change in disease states, and the benefits (or detriments) of these agonists to the pathways implicated in disease pathophysiology. Whilst much of the data centres around the calcitonin family of receptors, as their interactions with RAMPs are well established, this review then discusses receptors whose roles in obesity and diabetes are well founded, but the significance of whose interactions with RAMPs is more recently emerging. The conclusion of this study of the literature is, however, that the information surrounding RAMPs is conflicting and multifaceted, and more research is required to fully understand their contribution to obesity and diabetes.
Journal of Molecular Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 331 | 331 | 19 |
PDF Downloads | 238 | 238 | 15 |
Arrigoni S, Le Foll C, Cabak A, Lundh S, Raun K, John LM & & Lutz TA 2021 A selective role for receptor activity-modifying proteins in subchronic action of the amylin selective receptor agonist NN1213 compared with salmon calcitonin on body weight and food intake in male mice. European Journal of Neuroscience 54 4863–4876. (https://doi.org/10.1111/ejn.15376)
Baker B, Schaeffler B, Hirman J, Hompesch M, Pederson S & & Smith J 2021 Tolerability of eptinezumab in overweight, obese or type 1 diabetes patients. Endocrinology, Diabetes and Metabolism 4 e00217. (https://doi.org/10.1002/edm2.217)
Barbash S, Lorenzen E, Persson T, Huber T & & Sakmar TP 2017 GPCRs globally coevolved with receptor activity-modifying proteins, RAMPs. PNAS 114 12015–12020. (https://doi.org/10.1073/pnas.1713074114)
Barbash S, Persson T, Lorenzen E, Kazmi MA, Huber T & & Sakmar TP 2019 Detection of concordance between transcriptional levels of GPCRs and receptor-activity-modifying proteins. iScience 11 366–374. (https://doi.org/10.1016/j.isci.2018.12.024)
Bologna Z, Teoh JP, Bayoumi AS, Tang Y & & Kim IM 2017 Biased G protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomolecules and Therapeutics 25 12–25. (https://doi.org/10.4062/biomolther.2016.165)
Bomberger JM, Spielman WS, Hall CS, Weinman EJ & & Parameswaran N 2005a Receptor activity-modifying protein (RAMP) isoform-specific regulation of adrenomedullin receptor trafficking by NHERF-1. Journal of Biological Chemistry 280 23926–23935. (https://doi.org/10.1074/jbc.M501751200)
Bomberger JM, Parameswaran N, Hall CS, Aiyar N & & Spielman WS 2005b Novel function for receptor activity-modifying proteins (RAMPs) in post-endocytic receptor trafficking. Journal of Biological Chemistry 280 9297–9307. (https://doi.org/10.1074/jbc.M413786200)
Bonura A, Brunelli N, Marcosano M, Iaccarino G, Fofi L, Vernieri F & & Altamura C 2023 Calcitonin gene-related peptide systemic effects: embracing the complexity of its biological roles—a narrative review. International Journal of Molecular Sciences 24 13979. (https://doi.org/10.3390/ijms241813979)
Booe JM, Walker CS, Barwell J, Kuteyi G, Simms J, Jamaluddin MA, Warner ML, Bill RM, Harris PW, Brimble MA, et al.2015 Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor. Molecular Cell 58 1040–1052. (https://doi.org/10.1016/j.molcel.2015.04.018)
Bouschet T, Martin S & & Henley JM 2008 Regulation of calcium-sensing-receptor trafficking and cell-surface expression by GPCRs and RAMPs. Trends in Pharmacological Sciences 29 633–639. (https://doi.org/10.1016/j.tips.2008.09.002)
Boyle CN, Lutz TA & & Le Foll C 2018 Amylin – its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Molecular Metabolism 8 203–210. (https://doi.org/10.1016/j.molmet.2017.11.009)
Cao J, Belousoff MJ, Liang Y–L, Johnson RM, Josephs TM, Fletcher MM, Christopoulos A, Hay DL, Danev R, Wootten D, et al.2022 A structural basis for amylin receptor phenotype. Science 375 eabm9609. (https://doi.org/10.1126/science.abm9609)
Carter ME, Soden ME, Zweifel LS & & Palmiter RD 2013 Genetic identification of a neural circuit that suppresses appetite. Nature 503 111–114. (https://doi.org/10.1038/nature12596)
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D & & Sexton PM 2023 New insights into the structure and function of Class B1 GPCRs. Endocrine Reviews 44 492–517. (https://doi.org/10.1210/endrev/bnac033)
Cegla J, Jones BJ, Gardiner JV, Hodson DJ, Marjot T, McGlone ER, Tan TM & & Bloom SR 2017 RAMP2 influences glucagon receptor pharmacology via trafficking and signaling. Endocrinology 158 2680–2693. (https://doi.org/10.1210/en.2016-1755)
Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, et al.2017 Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Frontiers in Endocrinology 8 6. (https://doi.org/10.3389/fendo.2017.00006)
Chiu KC, Chuang L–M, Lee NP, Ryu JM, McGullam JL, Tsai GP & & Saad MF 2000 Insulin sensitivity is inversely correlated with plasma intact parathyroid hormone level. Metabolism 49 1501–1505. (https://doi.org/10.1053/meta.2000.17708)
Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N & & Sexton PM 2003 Novel receptor partners and function of receptor activity-modifying proteins. Journal of Biological Chemistry 278 3293–3297. (https://doi.org/10.1074/jbc.C200629200)
Clark AJ, Mullooly N, Safitri D, Harris M, de Vries T, MaassenVanDenBrink A, Poyner DR, Gianni D, Wigglesworth M & & Ladds G 2021 CGRP, adrenomedullin and adrenomedullin 2 display endogenous GPCR agonist bias in primary human cardiovascular cells. Communications Biology 4 776. (https://doi.org/10.1038/s42003-021-02293-w)
Coester B, Pence SW, Arrigoni S, Boyle CN, Le Foll C & & Lutz TA 2020 RAMP1 and RAMP3 differentially control Amylin’s effects on food intake, glucose and energy balance in male and female mice. Neuroscience 447 74–93. (https://doi.org/10.1016/j.neuroscience.2019.11.036)
Dackor R, Fritz–Six K, Smithies O & & Caron K 2007 Receptor activity-modifying Proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. Journal of Biological Chemistry 282 18094–18099. (https://doi.org/10.1074/jbc.M703544200)
Deshpande AD, Harris–Hayes M & & Schootman M 2008 Epidemiology of diabetes and diabetes-related complications. Physical Therapy 88 1254–1264. (https://doi.org/10.2522/ptj.20080020)
Dong Y, Betancourt A, Belfort M & & Yallampalli C 2017 Targeting adrenomedullin to improve lipid homeostasis in diabetic pregnancies. Journal of Clinical Endocrinology and Metabolism 102 3425–3436. (https://doi.org/10.1210/jc.2017-00920)
Dong Y, Ruano SH, Mishra A, Pennington KA & & Yallampalli C 2022 Adrenomedullin and its receptors are expressed in mouse pancreatic β-cells and suppresses insulin synthesis and secretion. PLoS One 17 e0265890. (https://doi.org/10.1371/journal.pone.0265890)
Dunican KC, Adams NM & & Desilets AR 2010 The role of pramlintide for weight loss. Annals of Pharmacotherapy 44 538–545. (https://doi.org/10.1345/aph.1M210)
Elgamal RM, Kudtarkar P, Melton RL, Mummey HM, Benaglio P, Okino ML & & Gaulton KJ 2023 An integrated map of cell type-specific gene expression in pancreatic islets. Diabetes 72 1719–1728. (https://doi.org/10.2337/db23-0130)
Fila M, Chojnacki J, Sobczuk P, Chojnacki C & & Blasiak J 2023 Nutrition and calcitonin gene related peptide (CGRP) in migraine. Nutrients 15 289. (https://doi.org/10.3390/nu15020289)
Fletcher MM, Keov P, Truong TT, Mennen G, Hick CA, Zhao P, Furness SGB, Kruse T, Clausen TR, Wootten D, et al.2021 AM833 is a novel agonist of calcitonin family G protein-coupled receptors: pharmacological comparison with six selective and nonselective agonists. Journal of Pharmacology and Experimental Therapeutics 377 417–440. (https://doi.org/10.1124/jpet.121.000567)
Fritz–Six KL, Dunworth WP, Li M & & Caron KM 2008 Adrenomedullin signaling is necessary for murine lymphatic vascular development. The Journal of Clinical Investigation 118 40–50. (https://doi.org/10.1172/JCI33302)
Gabe MBN, van der Velden WJC, Smit FX, Gasbjerg LS & & Rosenkilde MM 2020 Molecular interactions of full-length and truncated GIP peptides with the GIP receptor – a comprehensive review. Peptides 125 170224. (https://doi.org/10.1016/j.peptides.2019.170224)
Gamakharia S, Le Foll C, Rist W, Baader–Pagler T, Baljuls A & & Lutz TA 2021 The calcitonin receptor is the main mediator of LAAMA’s body weight lowering effects in male mice. European Journal of Pharmacology 908 174352. (https://doi.org/10.1016/j.ejphar.2021.174352)
GBD 2021 Diabetes Collaborators 2023 Global, regi onal, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402 203–234. (https://doi.org/10.1016/S0140-6736(2301301-6)
Gingell JJ, Simms J, Barwell J, Poyner DR, Watkins HA, Pioszak AA, Sexton PM & & Hay DL 2016 An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discovery 2 16020. (https://doi.org/10.1038/celldisc.2016.20)
Gram DX, Hansen AJ, Wilken M, Elm T, Svendsen O, Carr RD, Ahrén B & & Brand CL 2005 Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats. European Journal of Endocrinology 153 963–969. (https://doi.org/10.1530/eje.1.02046)
Gundry J, Glenn R, Alagesan P & & Rajagopal S 2017 A practical guide to approaching biased agonism at G protein coupled receptors. Frontiers in Neuroscience 11 17. (https://doi.org/10.3389/fnins.2017.00017)
Haarter E, Koth CM, Abdul–Manan N, Swenson L, Coll JT, Lippke JA, Lepre CA, Garcia–Guzman M & & Moore JM 2010 Crystal structure of the ectodomain complex of the CGRP receptor, a Class-B GPCR, reveals the site of drug antagonism. Structure 18 1083–1093. (https://doi.org/10.1016/j.str.2010.05.014)
Hædersdal S, Andersen A, Knop FK & & Vilsbøll T 2023 Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nature Reviews. Endocrinology 19 321–335. (https://doi.org/10.1038/s41574-023-00817-4)
Halloran J, Lalande A, Zang M, Chodavarapu H & & Riera CE 2020 Monoclonal therapy against calcitonin gene-related peptide lowers hyperglycemia and adiposity in type 2 diabetes mouse models. Metabolism Open 8 100060. (https://doi.org/10.1016/j.metop.2020.100060)
Harris M, Mackie DI, Pawlak JB, Carvalho S, Truong TT, Safitri D, Yeung HY, Routledge S, Harper MT, Al–Zaid B, et al.2021 RAMPs regulate signalling bias and internalisation of the GIPR. bioRxiv [epub]. (https://doi.org/10.1101/2021.04.08.436756)
Hay DL, Poyner DR & & Sexton PM 2006 GPCR modulation by RAMPs. Pharmacology and Therapeutics 109 173–197. (https://doi.org/10.1016/j.pharmthera.2005.06.015)
Hay DL, Chen S, Lutz TA, Parkes DG & & Roth JD 2015 Amylin: pharmacology, physiology, and clinical potential. Pharmacological Reviews 67 564–600. (https://doi.org/10.1124/pr.115.010629)
Hay DL, Garelja ML, Poyner DR & & Walker CS 2018 Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. British Journal of Pharmacology 175 3–17. (https://doi.org/10.1111/bph.14075)
Hayashi M, Shimosawa T, Isaka M, Yamada S, Fujita R, Fujita T & & Hayashi M 1997 Plasma adrenomedullin in diabetes. Lancet 350 1449–1450. (https://doi.org/10.1016/s0140-6736(0564211-0)
Hayashi M, Shimosawa T & & Fujita T 1999 Hyperglycemia increases vascular adrenomedullin expression. Biochemical and Biophysical Research Communications 258 453–456. (https://doi.org/10.1006/bbrc.1999.0664)
Héroux M, Breton B, Hogue M & & Bouvier M 2007 Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET. Biochemistry 46 7022–7033. (https://doi.org/10.1021/bi0622470)
Hosono K, Yamashita A, Tanabe M, Ito Y, Majima M, Tsujikawa K & & Amano H 2024 Deletion of RAMP1 signaling enhances diet-induced obesity and fat absorption via intestinal lacteals in mice. In Vivo 38 160–173. (https://doi.org/10.21873/invivo.13422)
Ichikawa–Shindo Y, Sakurai T, Kamiyoshi A, Kawate H, Iinuma N, Yoshizawa T, Koyama T, Fukuchi J, Iimuro S, Moriyama N, et al.2008 The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. Journal of Clinical Investigation 118 29–39. (https://doi.org/10.1172/JCI33022)
Jumaahm MK, Alhamza AHA & & Mansour AA 2021 The study of the association of serum parathyroid hormone level with obesity in patients admitted to a Tertiary Care Center in Basrah. Dubai Diabetes and Endocrinology Journal 27 143–149. (https://doi.org/10.1159/000520660)
Kahn SE, Cooper ME & & Prato SD 2014 Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383 1068–1083. (https://doi.org/10.1016/S0140-6736(1362154-6)
Karageorgos V, Venihaki M, Sakellaris S, Pardalos M, Kontakis G, Matsoukas MT, Gravanis A, Margioris A & & Liapakis G 2018 Current understanding of the structure and function of family B GPCRs to design novel drugs. Hormones 17 45–59. (https://doi.org/10.1007/s42000-018-0009-5)
Kechele DO, Dunworth WP, Trincot CE, Wetzel-Strong SE, Li M, Ma H, Liu J & & Caron KM 2016 Endothelial restoration of receptor activity-modifying protein 2 is sufficient to rescue lethality, but survivors develop dilated cardiomyopathy. Hypertension 68 667–677. (https://doi.org/10.1161/HYPERTENSIONAHA.116.07191)
Kelly E, Bailey CP & & Henderson G 2008 Agonist-selective mechanisms of GPCR desensitization. British Journal of Pharmacology 153(Supplement 1) S379–S388. (https://doi.org/10.1038/sj.bjp.0707604)
Kim H, Kim M, Im SK & & Fang S 2018 Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Laboratory Animal Research 34 147–159. (https://doi.org/10.5625/lar.2018.34.4.147)
Kim J, Lee SK, Kim D, Choe H, Jang YJ, Park HS & Kim J–H , Hong JP, Lee YJ & & Heo Y 2020 Altered expression of adrenomedullin 2 and its receptor in the adipose tissue of obese patients. Journal of Clinical Endocrinology and Metabolism 105 e583–e596. (https://doi.org/10.1210/clinem/dgz066)
Kivimäki M, Strandberg T, Pentti J, Nyberg ST, Frank P, Jokela M, Ervasti J, Suominen SB, Vahtera J, Sipilä PN, et al.2022 Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study. Lancet. Diabetes and Endocrinology 10 253–263. (https://doi.org/10.1016/S2213-8587(2200033-X)
Klein S, Gastaldelli A, Yki–Järvinen H & & Scherer PE 2022 Why does obesity cause diabetes? Cell Metabolism 34 11–20. (https://doi.org/10.1016/j.cmet.2021.12.012)
Krishna Kumar K, O’Brien ES, Habrian CH, Latorraca NR, Wang H, Tuneew I, Montabana E, Marqusee S, Hilger D, Isacoff EY, et al.2023 Negative allosteric modulation of the glucagon receptor by RAMP2. Cell 186 1465–1477.e18. (https://doi.org/10.1016/j.cell.2023.02.028)
Larsen AT, Mohamed KE, Sonne N, Bredtoft E, Andersen F, Karsdal MA & & Henriksen K 2022 Does receptor balance matter? – comparing the efficacies of the dual amylin and calcitonin receptor agonists cagrilintide and KBP-336 on metabolic parameters in preclinical models. Biomedicine and Pharmacotherapy 156 113842. (https://doi.org/10.1016/j.biopha.2022.113842)
Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al–Mrabeh A, Hollingsworth KG, et al.2018 Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391 541–551. (https://doi.org/10.1016/S0140-6736(1733102-1)
Lenhart PM, Broselid S, Barrick CJ, Leeb–Lundberg LMF & & Caron KM 2013 G-protein-coupled receptor 30 interacts with receptor activity-modifying protein 3 and confers sex-dependent cardioprotection. Journal of Molecular Endocrinology 51 191–202. (https://doi.org/10.1530/JME-13-0021)
Leuthardt AS, Boyle CN, Raun K, Lutz TA, John LM & & Le Foll C 2023 Body weight lowering effect of glucose-dependent insulinotropic polypeptide and glucagon-like peptide receptor agonists is more efficient in RAMP1/3 KO than in WT mice. European Journal of Pharmacology 955 175912. (https://doi.org/10.1016/j.ejphar.2023.175912)
Liang YL, Belousoff MJ, Fletcher MM, Zhang X, Khoshouei M, Deganutti G, Koole C, Furness SGB, Miller LJ, Hay DL, et al.2020 Structure and dynamics of adrenomedullin receptors AM1 and AM2 reveal key mechanisms in the control of receptor phenotype by receptor activity-modifying proteins. ACS Pharmacology and Translational Science 3 263–284. (https://doi.org/10.1021/acsptsci.9b00080)
Liao SB, Wong PF, WSO, Cheung BM & & Tang F 2013 Effects of adrenomedullin on tumour necrosis factor alpha, interleukins, endothelin-1, leptin, and adiponectin in the epididymal fat and soleus muscle of the rat. Hormone and Metabolic Research 45 31–37. (https://doi.org/10.1055/s-0032-1321879)
Liu T, Kamiyoshi A, Sakurai T, Ichikawa–Shindo Y, Kawate H, Yang L, Tanaka M, Xian X, Imai A, Zhai L, et al.2017 Endogenous calcitonin gene-related peptide regulates lipid metabolism and energy homeostasis in male mice. Endocrinology 158 1194–1206. (https://doi.org/10.1210/en.2016-1510)
Liu T, Kamiyoshi A, Tanaka M, Iida S, Sakurai T, Ichikawa–Shindo Y, Kawate H, Hirabayashi K, Dai K, Cui N, et al.2018 RAMP3 deficiency enhances postmenopausal obesity and metabolic disorders. Peptides 110 10–18. (https://doi.org/10.1016/j.peptides.2018.10.006)
Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, et al.2015 Genetic studies of body mass index yield new insights for obesity biology. Nature 518 197–206. (https://doi.org/10.1038/nature14177)
Loos RJF & & Yeo GSH 2022 The genetics of obesity: from discovery to biology. Nature Reviews. Genetics 23 120–133. (https://doi.org/10.1038/s41576-021-00414-z)
Lorenzen E, Dodig–Crnković T, Kotliar IB, Pin E, Ceraudo E, Vaughan RD, Uhlèn M, Huber T, Schwenk JM & & Sakmar TP 2019 Multiplexed analysis of the secretin-like GPCR–RAMP interactome. Science Advances 5 eaaw2778. (https://doi.org/10.1126/sciadv.aaw2778)
Lu Y–Z, Nayer B, Singh SK, Alshoubaki YK, Yuan E, Park AJ, Maruyama K, Akira S & & Martino MM 2024 CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 628 604–611. (https://doi.org/10.1038/s41586-024-07237-y)
Lv Y, Zhang SY, Liang X, Zhang H, Xu Z, Liu B, Xu MJ, Jiang C, Shang J & & Wang X 2016 Adrenomedullin 2 enhances beiging in white adipose tissue directly in an adipocyte-autonomous manner and indirectly through activation of M2 macrophages. Journal of Biological Chemistry 291 23390–23402. (https://doi.org/10.1074/jbc.M116.735563)
Mackie DI, Nielsen NR, Harris M, Singh S, Davis RB, Dy D, Ladds G & & Caron KM 2019 RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis. PNAS 116 24093–24099. (https://doi.org/10.1073/pnas.1905561116)
Makwana K, Lalande A, Morones N, Chodavarapu H, Nguyen PT, Jovanovic P, Wang Y & & Riera CE 2020 Sensory neuron s expressing calcitonin gene–related peptide regulate adaptive thermogenesis and diet-induced obesity. Molecular Metabolism 45101161. (https://doi.org/10.1016/j.molmet.2021.101161)
Martı́nez A, Elsasser TH, Bhathena SJ, Pío R, Buchanan TA, Macri CJ & & Cuttitta F 1999 Is adrenomedullin a causal agent in some cases of type 2 diabetes? Peptides 20 1471–1478. (https://doi.org/10.1016/s0196-9781(9900158-8)
Mathiesen DS, Lund A, Vilsbøll T, Knop FK & & Bagger JI 2021 Amylin and calcitonin: potential therapeutic strategies to reduce body weight and liver fat. Frontiers in Endocrinology 11 617400. (https://doi.org/10.3389/fendo.2020.617400)
Mawla AM & & Huising MO 2019 Navigating the depths and avoiding the shallows of pancreatic islet cell transcriptomes. Diabetes 68 1380–1393. (https://doi.org/10.2337/dbi18-0019)
McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG & & Foord SM 1998 RAMPs regulate the transport and ligand specificity of the calcitonin–receptor–like receptor. Nature 393 333–339. (https://doi.org/10.1038/30666)
Mok JK, Makaronidis JM & & Batterham RL 2019 The role of gut hormones in obesity. Current Opinion in Endocrine and Metabolic Research 4 4–13. (https://doi.org/10.1016/j.coemr.2018.09.005)
Müller TD, Blüher M, Tschöp MH & & DiMarchi RD 2022 Anti-obesity drug discovery: advances and challenges. Nature Reviews. Drug Discovery 21 201–223. (https://doi.org/10.1038/s41573-021-00337-8)
Nakamura T, Honda K, Ishikawa S, Kitamura K, Eto T & & Saito T 1998 Plasma adrenomedullin levels in patients with non-insulin dependent diabetes mellitus: close relationships with diabetic complications. Endocrine Journal 45 241–246. (https://doi.org/10.1507/endocrj.45.241)
Nauck MA, Quast DR, Wefers J & & Meier JJ 2021a GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism 46 101102. (https://doi.org/10.1016/j.molmet.2020.101102)
Nauck MA, Quast DR, Wefers J & & Pfeiffer AFH 2021b The evolving story of incretins (GIP and GLP–1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes, Obesity and Metabolism 23(Supplement 3) 5–29. (https://doi.org/10.1111/dom.14496)
Nemec K, Schihada H, Kleinau G, Zabel U, Grushevskyi EO, Scheerer P, Lohse MJ & & Maiellaro I 2022 Functional modulation of PTH1R activation and signaling by RAMP2. PNAS 119 e2122037119. (https://doi.org/10.1073/pnas.2122037119)
Potier L, Mohammedi K, Saulnier PJ, Fumeron F, Halimi JM, Venteclef N, Marre M, Hadjadj S, Roussel R & & Velho G 2022 Plasma adrenomedullin, allelic variations in the ADM gene, and risk for lower-limb amputation in people with type 2 diabetes. Diabetes Care 45 1631–1639. (https://doi.org/10.2337/dc21-2638)
Prakash J, Herlin M, Kumar J, Garg G, Akesson KE, Grabowski PS, Skerry TM, Richards GO & & McGuigan FEA 2019 Analysis of RAMP3 gene polymorphism with body composition and bone density in young and elderly women. Gene 721 100009. (https://doi.org/10.1016/j.gene.2019.100009)
Purnell JQ 2023 Definitions, classification, and epidemiology of obesity. In Endotext. Eds Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, et al.South Dartmouth, MA, USA: MDText.com, Inc.
Qi T & & Hay DL 2010 Structure-function relationships of the N-terminus of receptor activity-modifying proteins. British Journal of Pharmacology 159 1059–1068. (https://doi.org/10.1111/j.1476-5381.2009.00541.x)
Rajagopal S, Rajagopal K & & Lefkowitz RJ 2010 Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nature Reviews. Drug Discovery 9 373–386. (https://doi.org/10.1038/nrd3024)
Russell FA, King R, Smillie S–J, Kodji X & & Brain SD 2014 Calcitonin gene-related peptide: physiology and pathophysiology. Physiological Reviews 94 1099–1142. (https://doi.org/10.1152/physrev.00034.2013)
Ryan GJ, Jobe LJ & & Martin R 2005 Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clinical Therapeutics 27 1500–1512. (https://doi.org/10.1016/j.clinthera.2005.10.009)
Schelshorn D, Joly F, Mutel S, Hampe C, Breton B, Mutel V & & Lütjens R 2012 Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation. Molecular Pharmacology 81 309–318. (https://doi.org/10.1124/mol.111.074757)
Seino Y, Fukushima M & & Yabe D 2010 GIP and GLP-1, the two incretin hormones: similarities and differences. Journal of Diabetes Investigation 1 8–23. (https://doi.org/10.1111/j.2040-1124.2010.00022.x)
Serafin DS, Harris NR, Nielsen NR, Mackie DI & & Caron KM 2020 Dawn of a new RAMPage. Trends in Pharmacological Sciences 41 249–265. (https://doi.org/10.1016/j.tips.2020.01.009)
Shao L, Chen Y, Zhang S, Zhang Z, Cao Y, Yang D & & Wang MW 2022 Modulating effects of RAMPs on signaling profiles of the glucagon receptor family. Acta Pharmaceutica Sinica B 12 637–650. (https://doi.org/10.1016/j.apsb.2021.07.028)
Sriram K & & Insel PA 2018 G Protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Molecular Pharmacology 93 251–258. (https://doi.org/10.1124/mol.117.111062)
Suetomi R, Ohta Y, Akiyama M, Matsumura T, Taguchi A, Yamamoto K, Kamatani T & & Tanizawa Y 2020 Adrenomedullin has a cytoprotective role against endoplasmic reticulum stress for pancreatic β-cells in autocrine and paracrine manners. Journal of Diabetes Investigation 11 823–833. (https://doi.org/10.1111/jdi.13218)
Taylor MM, Bagley SL & & Samson WK 2005 Intermedin/adrenomedullin-2 acts within central nervous system to elevate blood pressure and inhibit food and water intake. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 288 R919–R927. (https://doi.org/10.1152/ajpregu.00744.2004)
Taylor WH 1991 The prevalence of diabetes mellitus in patients with primary hyperparathyroidism and among their relatives. Diabetic Medicine 8 683–687. (https://doi.org/10.1111/j.1464-5491.1991.tb01678.x)
Tuteja N 2009 Signaling through G protein coupled receptors. Plant Signaling and Behavior 4 942–947. (https://doi.org/10.4161/psb.4.10.9530)
Walker CS, Li X, Whiting L, Glyn–Jones S, Zhang S, Hickey AJ, Sewell MA, Ruggiero K, Phillips ARJ, Kraegen EW, et al.2010 Mice lacking the neuropeptide α–calcitonin gene–related peptide are protected against diet–induced obesity. Endocrinology 151 4257–4269. (https://doi.org/10.1210/en.2010-0284)
Wareham NJ, Byrne CD, Carr C, Day NE, Boucher BJ & & Hales CN 1997 Glucose intolerance is associated with altered calcium homeostasis: a possible link between increased serum calcium concentration and cardiovascular disease mortality. Metabolism: Clinical and Experimental 46 1171–1177. (https://doi.org/10.1016/s0026-0495(9790212-2)
Weston C, Lu J, Li N, Barkan K, Richards GO, Roberts DJ, Skerry TM, Poyner D, Pardamwar M, Reynolds CA, et al.2015 Modulation of glucagon receptor pharmacology by receptor activity-modifying Protein-2 (RAMP2). Journal of Biological Chemistry 290 23009–23022. (https://doi.org/10.1074/jbc.M114.624601)
Weston C, Winfield I, Harris M, Hodgson R, Shah A, Dowell SJ, Mobarec JC, Woodlock DA, Reynolds CA, Poyner DR, et al.2016 Receptor activity-modifying protein-directed G protein signaling specificity for the calcitonin gene-related peptide family of receptors. Journal of Biological Chemistry 291 21925–21944. (https://doi.org/10.1074/jbc.M116.751362)
Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, Dean ED, Campbell JE, Bloom SR, Tan TM–M, Knop FK, et al.2023 100 years of glucagon and 100 more. Diabetologia 66 1378–1394. (https://doi.org/10.1007/s00125-023-05947-y)
Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, McGowan BM, Rosenstock J, Tran MTD, Wadden TA, et al.2021 Once-weekly semaglutide in adults with overweight or obesity. New England Journal of Medicine 384 989–1002. (https://doi.org/10.1056/NEJMoa2032183)
Willard FS, Douros JD, Gabe MBN, Showalter AD, Wainscott DB, Suter TM, Capozzi ME, van der Velden WJ, Stutsman C, Cardona GR, et al.2020 Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5 e140532. (https://doi.org/10.1172/jci.insight.140532)
Wong HK, Tang F, Cheung TT & & Cheung BMY 2014 Adrenomedullin and diabetes. World Journal of Diabetes 5 364–371. (https://doi.org/10.4239/wjd.v5.i3.364)
Wootten D, Lindmark H, Kadmiel M, Willcockson H, Caron KM, Barwell J, Drmota T & & Poyner DR 2013 Receptor activity modifying proteins (RAMPs) interact with the VPAC2 receptor and CRF1 receptors and modulate their function. British Journal of Pharmacology 168 822–834. (https://doi.org/10.1111/j.1476-5381.2012.02202.x)
Zelissen PMJ, Koppeschaar HPF, Lips CJM & & Hackeng WHL 1991 Calcitonin gene-related peptide in human obesity. Peptides 12 861–863. (https://doi.org/10.1016/0196-9781(9190147-h)
Zhang H, Zhang SY, Jiang C, Li Y, Xu G, Xu MJ & & Wang X 2016 Intermedin/adrenomedullin 2 polypeptide promotes adipose tissue browning and reduces high-fat diet-induced obesity and insulin resistance in mice. International Journal of Obesity 40 852–860. (https://doi.org/10.1038/ijo.2016.2)
Zhang Z, Liu X, Morgan DA, Kuburas A, Thedens DR, Russo AF & & Rahmouni K 2011 Neuronal receptor activity-modifying protein 1 promotes energy expenditure in mice. Diabetes 60 1063–1071. (https://doi.org/10.2337/db10-0692)
Online ISSN: 1479-6813
Print ISSN: 0952-5041
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519