Znrf3 exon 2 deletion mice do not recapitulate congenital adrenal hypoplasia

in Journal of Molecular Endocrinology
Authors:
Noboru Uchida Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan

Search for other papers by Noboru Uchida in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3817-6285
,
Tomohiro Ishii Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan

Search for other papers by Tomohiro Ishii in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7360-2465
,
Naoko Amano Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
Department of Pediatrics, Saitama City Hospital, Saitama, Japan

Search for other papers by Naoko Amano in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0457-6173
,
Shuji Takada Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan

Search for other papers by Shuji Takada in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9406-4683
,
Kyoko Kobayashi Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan

Search for other papers by Kyoko Kobayashi in
Current site
Google Scholar
PubMed
Close
,
Tomoaki Murakami Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan

Search for other papers by Tomoaki Murakami in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5706-7842
,
Satoshi Narumi Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan

Search for other papers by Satoshi Narumi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0940-4517
, and
Tomonobu Hasegawa Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan

Search for other papers by Tomonobu Hasegawa in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0143-3989

Correspondence should be addressed to T Hasegawa: thaseg@keio.jp
Restricted access
Rent on DeepDyve

Sign up for journal news

Wnt/β-catenin signaling is essential for adrenocortical development. Zinc and ring finger 3 (ZNRF3), an E3 ubiquitin ligase that attenuates Wnt/β-catenin signaling, is negatively regulated by R-spondin via an extracellular domain that is partially encoded by exon 2 of ZNRF3. We recently identified ZNRF3 exon 2 deletions in three individuals with congenital adrenal hypoplasia. ZNRF3 exon 2 deletion impairs R-spondin binding, thereby attenuating β-catenin expression and eventually leading to the development of congenital adrenal hypoplasia. To elucidate the influence of ZNRF3/Znrf3 exon 2 deletion on adrenocortical development, we generated homozygous Znrf3 exon 2 deletion (Znrf3 Δ2/Δ2) mice. Whereas the adrenal glands of Znrf3 Δ2/Δ2 mice did not show gross morphological changes at birth, moderate hyperplasia of the zona fasciculata (ZF), dispersed medulla arrangement, and a radially spreading zone with macrophage infiltration between the ZF and medulla were observed at 6 weeks of age. 20α-hydroxysteroid dehydrogenase, a marker of the adrenal X-zone, was hardly detected by immunostaining, and gene expression was significantly downregulated. The number of activated β-catenin-positive cells decreased in the zona glomerulosa, consistent with the results of in situ hybridization for Axin2, a Wnt/β-catenin target gene. Plasma ACTH and serum corticosterone levels in Znrf3 Δ2/Δ2 mice did not differ significantly from those in wild-type mice. These results show a species-specific difference in the effects of ZNRF3/Znrf3 exon 2 deletions in humans and mice; Znrf3 Δ2/Δ2 mice do not develop congenital adrenal hypoplasia but instead exhibit moderate ZF hyperplasia, dispersed medulla arrangement, X-zone dysplasia, and macrophage infiltration occurred in the inner cortex.

 

  • Collapse
  • Expand
  • Amano N, Narumi S, Aizu K, Miyazawa M, Okamura K, Ohashi H, Katsumata N, Tomohiro I & & Hasegawa T 2024 Single-exon deletions of ZNRF3 exon 2 cause congenital adrenal hypoplasia. Journal of Clinical Endocrinology and Metabolism 20 641648. (https://doi.org/10.1210/clinem/dgad627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Basham KJ, Rodriguez S, Turcu AF, Lerario AM, Logan CY, Rysztak MR, Gomez-Sanchez CE, Breault DT, Koo BK, Clevers H, et al.2019 A ZNRF3-dependent Wnt/β-catenin signaling gradient is required for adrenal homeostasis. Genes and Development 33 209220. (https://doi.org/10.1101/gad.317412.118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Belluscio L, Gold GH, Nemes A & & Axel R 1998 Mice deficient in G(olf) are anosmic. Neuron 20 6981. (https://doi.org/10.1016/S0896-6273(0080435-3)

  • Berthon A, Sahut-Barnola I, Lambert-Langlais S, de Joussineau C, Damon-Soubeyrand C, Louiset E, Taketo MM, Tissier F, Bertherat J, Lefrançois-Martinez AM, et al.2010 Constitutive β-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Human Molecular Genetics 19 15611576. (https://doi.org/10.1093/hmg/ddq029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brunet LJ, Gold GH & & Ngai J 1996 General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17 681693. (https://doi.org/10.1016/S0896-6273(0080200-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dutta S & & Sengupta P 2016 Men and mice: relating their ages. Life Sciences 152 244248. (https://doi.org/10.1016/j.lfs.2015.10.025)

  • Ge SX, Son EW & & Yao R 2018 iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19 534. (https://doi.org/10.1186/s12859-018-2486-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hao HX, Xie Y, Zhang Y, Zhang O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, et al.2012 ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485 195200. (https://doi.org/10.1038/nature11019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hershkovitz L, Beuschlein F, Klammer S, Krup M & & Weinstein Y 2007 Adrenal 20α-hydroxysteroid dehydrogenase in the mouse catabolizes progesterone and 11-deoxycorticosterone and is restricted to the X-Zone. Endocrinology 148 976988. (https://doi.org/10.1210/en.2006-1100))

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hirokawa N & & Ishikawa H 1975 Electron microscopic observations on the castration-induced X zone in the adrenal cortex of male mice. Cell and Tissue Research 162 119130. (https://doi.org/10.1007/BF00223267)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang CCJ & & Kang Y 2019 The transient cortical zone in the adrenal gland : the mystery of the adrenal X-zone. Journal of Endocrinology 241 R51R63. (https://doi.org/10.1530/JOE-18-0632)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishii T, Mitsui T, Suzuki S, Matsuzaki Y & & Hasegawa T 2012 A genome-wide expression profile of adrenocortical cells in knockout mice lacking steroidogenic acute regulatory protein. Endocrinology 153 27142723. (https://doi.org/10.1210/en.2011-1627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jho EH, Zhang T, Domon C, Joo C-K, Freund J-N & & Costantini F 2002 Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and Cellular Biology 22 11721183. (https://doi.org/10.1128/MCB.22.4.1172-1183.2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim AC, Reuter AL, Zubair M, Else T, Serecky K, Bingham NC, Lavery GG, Parker KL & & Hammer GD 2008 Targeted disruption of β -catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135 25932602. (https://doi.org/10.1242/dev.021493)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koo BK, Spit M, Jordens I, Low TY, Stange DE, Van De Wetering M, Van Es JH, Mohammed S, Heck AJR, Maurice MM, et al.2012 Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488 665669. (https://doi.org/10.1038/nature11308)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kos CH & & Ph D 2004 Cre/loxP system for generating tissue-specific knockout mouse models. Nutrition Reviews 62 243246. (https://doi.org/10.1301/nr2004.jun243-246)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leal LF, Mermejo LM, Ramalho LZ, Martinelli CE, Yunes JA, Seidinger AL, Mastellaro MJ, Cardinalli IA, Brandalise SR, Moreira AC, et al.2011 Wnt/β-catenin pathway deregulation in childhood adrenocortical tumors. Journal of Clinical Endocrinology and Metabolism 96 31063114. (https://doi.org/10.1210/jc.2011-0363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Little DW, Dumontet T, LaPensee CR & & Hammer GD 2021 Β-catenin in adrenal zonation and disease. Molecular and Cellular Endocrinology 522 111120. (https://doi.org/10.1016/j.mce.2020.111120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lyraki R, Grabek A, Tison A, Weerasinghe Arachchige LC, Peitzsch M, Bechmann N, Youssef SA, de Bruin A, Bakker ERM, Claessens F, et al.2023 Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice. Disease Models and Mechanisms 16 115. (https://doi.org/10.1242/dmm.050053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naito Y, Hino K, Bono H & & Ui-Tei K 2015 CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31 11201123. (https://doi.org/10.1093/bioinformatics/btu743)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peng WC, De Lau W, Madoori PK, Forneris F, Granneman JCM, Clevers H & & Gros P 2013 Structures of Wnt-antagonist ZNRF3 and its complex with R-spondin 1 and implications for signaling. PLoS One 8 e83110. (https://doi.org/10.1371/journal.pone.0083110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Risser JM & & Slotnick BM 1987 Nipple attachment and survival in neonatal olfactory bulbectomized rats. Physiology and Behavior 40 545549. (https://doi.org/10.1016/0031-9384(8790042-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Gil DJ & & Greer CA 2008 Wnt/frizzled family members mediate olfactory sensory neuron axon extension. Journal of Comparative Neurology 511 301317. (https://doi.org/10.1002/cne.21834)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trapnell C 2013 Nature_TapHat_CUfflinks. Nature Protocol 7 562578. (https://doi.org/10.1038/nprot.2012.016.Differential)

  • Trapnell C, Pachter L & & Salzberg SL 2009 TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25 11051111. (https://doi.org/10.1093/bioinformatics/btp120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ushijima K, Ogawa Y, Terao M, Asakura Y, Muroya K, Hayashi M, Ishii T, Hasegawa T, Sekido R, Fukami M, et al.2021 Identification of the first promoter-specific gain-of-function SOX9 missense variant (p.E50K) in a patient with 46,XX ovotesticular disorder of sex development American Journal of Medical Genetics, Part A 185 10671075. (https://doi.org/10.1002/ajmg.a.62063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vidal V, Sacco S, Rocha AS, Da Silva F, Panzolini C, Dumontet T, Doan TMP, Shan J, Rak-Raszewska A, Bird T, et al.2016 The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes and Development 30 13891394. (https://doi.org/10.1101/gad.277756.116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Warde KM, Smith LJ, Liu L, Stubben CJ, Lohman BK, Willett PW, Ammer JL, Castaneda-Hernandez G, Imodoye SO, Zhang C, et al.2023 Senescence-induced immune remodeling facilitates metastatic adrenal cancer in a sex-dimorphic manner. Nature Aging 3 846865. (https://doi.org/10.1038/s43587-023-00420-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilmouth JJ, Olabe J, Garcia-Garcia D, Lucas C, Guiton R, Roucher-Boulez F, Dufour D, Damon-Soubeyrand C, Sahut-Barnola I, Pointud JC, et al.2022 Sexually dimorphic activation of innate antitumor immunity prevents adrenocortical carcinoma development. Science Advances 8 eadd0422. (https://doi.org/10.1126/sciadv.add0422)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wood MA & & Hammer GD 2011 Adrenocortical stem and progenitor cells: unifying model of two proposed origins. Molecular and Cellular Endocrinology 336 206212. (https://doi.org/10.1016/j.mce.2010.11.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y, Wan Z, Zhang E & & Piao Y 2023 Genomic profiling and immune landscape of olfactory neuroblastoma in China. Frontiers in Oncology 13 1226494. (https://doi.org/10.3389/fonc.2023.1226494)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zebisch M & & Jones EY 2015 ZNRF3/RNF43 - A direct linkage of extracellular recognition and E3 ligase activity to modulate cell surface signalling. Progress in Biophysics and Molecular Biology 118 112118. (https://doi.org/10.1016/j.pbiomolbio.2015.04.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zebisch M, Xu Y, Krastev C, Macdonald BT, Chen M, Gilbert RJC, He X & & Jones EY 2013 Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nature Communications 4 2787. (https://doi.org/10.1038/ncomms3787)

    • PubMed
    • Search Google Scholar
    • Export Citation