Establishment of Star-edited Y1 cells as a novel in vitro functional assay for STAR

in Journal of Molecular Endocrinology
Authors:
Takeshi Sato Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan

Search for other papers by Takeshi Sato in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0535-2975
,
Satoshi Narumi Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan

Search for other papers by Satoshi Narumi in
Current site
Google Scholar
PubMed
Close
,
Tetsushi Sakuma Graduate School of Agriculture, Kyoto University, c/o Regional Fish Institute, Ltd., Creation Core Kyoto Mikuruma, Kamigyo-ku, Kyoto-shi, Kyoto, Japan

Search for other papers by Tetsushi Sakuma in
Current site
Google Scholar
PubMed
Close
,
Kazuhiro Shimura Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan

Search for other papers by Kazuhiro Shimura in
Current site
Google Scholar
PubMed
Close
,
Yosuke Ichihashi Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan

Search for other papers by Yosuke Ichihashi in
Current site
Google Scholar
PubMed
Close
,
Takashi Yamamoto Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima-shi, Hiroshima, Japan

Search for other papers by Takashi Yamamoto in
Current site
Google Scholar
PubMed
Close
,
Tomohiro Ishii Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan

Search for other papers by Tomohiro Ishii in
Current site
Google Scholar
PubMed
Close
, and
Tomonobu Hasegawa Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan

Search for other papers by Tomonobu Hasegawa in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to T Hasegawa: thaseg@keio.jp
Restricted access
Rent on DeepDyve

Sign up for journal news

Genetic variants involving steroidogenic acute regulatory protein cause lipoid congenital adrenal hyperplasia, which is characterized by impaired steroidogenesis in the adrenal glands and gonads. Functional assessment of variant STAR proteins is necessary for an accurate genetic diagnosis. Ideally, steroidogenic cells should be used to assess the functionality of STAR proteins, but the presence of endogenous STARs in steroidogenic cells precludes such a method. Here, we generated Star-edited cells from steroidogenic Y1 mouse adrenocortical tumor cells by genome editing. Star-edited Y1 cells exhibited very low but measurable cAMP-dependent pregnenolone production. Furthermore, stimulation of the cAMP pathway for 2 weeks resulted in the formation of lipid droplets in the cytoplasm of Star-edited Y1 cells, which resembled the histology of the adrenal glands of patients with lipoid congenital adrenal hyperplasia. The steroidogenic defect of Star-edited Y1 cells can be restored by transient overexpression of mouse Star. We found that human STAR can also restore defective steroidogenesis in Star-edited Y1 cells, and we were able to construct a novel in vitro system to evaluate human STAR variants. Collectively, we established Star-edited Y1 cells that retain the steroidogenic pathway downstream of the Star protein. Star-edited Y1 cells recapitulate the functional and morphological changes of lipoid congenital adrenal hyperplasia and can be used to evaluate the functionality of human STAR variants.

 

  • Collapse
  • Expand
  • Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, Stocco DM & & Strauss JF 3rd 1997 Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. Journal of Biological Chemistry 272 3265632662. (https://doi.org/10.1074/jbc.272.51.32656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baker BY, Epand RF, Epand RM & & Miller WL 2007 Cholesterol binding does not predict activity of the steroidogenic acute regulatory protein, StAR. Journal of Biological Chemistry 282 1022310232. (https://doi.org/10.1074/jbc.M611221200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baker BY, Lin L, Kim CJ, Raza J, Smith CP, Miller WL & & Achermann JC 2006 Nonclassic congenital lipoid adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia. Journal of Clinical Endocrinology and Metabolism 91 47814785. (https://doi.org/10.1210/jc.2006-1565)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bose HS, Sugawara T, Strauss JF 3rd, Miller WL & International Congenital Lipoid Adrenal Hyperplasia Consortium 1996 The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. New England Journal of Medicine 335 18701878. (https://doi.org/10.1056/NEJM199612193352503)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark BJ, Wells J, King SR & & Stocco DM 1994 The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). Journal of Biological Chemistry 269 2831428322. (https://doi.org/10.1016/S0021-9258(1846930-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duarte A, Poderoso C, Cooke M, Soria G, Cornejo Maciel F, Gottifredi V & & Podestá EJ 2012 Mitochondrial fusion is essential for steroid biosynthesis. PLoS One 7 e45829. (https://doi.org/10.1371/journal.pone.0045829)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Finkielstain GP, Vieites A, Bergadá I & & Rey RA 2021 Disorders of sex development of adrenal origin. Frontiers in Endocrinology (Lausanne) 12 770782. (https://doi.org/10.3389/fendo.2021.770782)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fleury A, Mathieu AP, Ducharme L, Hales DB & & LeHoux JG 2004 Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR). Journal of Steroid Biochemistry and Molecular Biology 91 259271. (https://doi.org/10.1016/j.jsbmb.2004.04.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flück CE, Maret A, Mallet D, Portrat-Doyen S, Achermann JC, Leheup B, Theintz GE, Mullis PE & & Morel Y 2005 A novel mutation L260P of the steroidogenic acute regulatory protein gene in three unrelated patients of Swiss ancestry with congenital lipoid adrenal hyperplasia. Journal of Clinical Endocrinology and Metabolism 90 53045308. (https://doi.org/10.1210/jc.2005-0874)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flück CE, Pandey AV, Dick B, Camats N, Fernández-Cancio M, Clemente M, Gussinyé M, Carrascosa A, Mullis PE & & Audi L 2011 Characterization of novel StAR (steroidogenic acute regulatory protein) mutations causing non-classic lipoid adrenal hyperplasia. PLoS One 6 e20178. (https://doi.org/10.1371/journal.pone.0020178)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fujieda K, Tajima T, Nakae J, Sageshima S, Tachibana K, Suwa S, Sugawara T & & Strauss JF 3rd 1997 Spontaneous puberty in 46,XX subjects with congenital lipoid adrenal hyperplasia. Ovarian steroidogenesis is spared to some extent despite inactivating mutations in the steroidogenic acute regulatory protein (StAR) gene. Journal of Clinical Investigation 99 12651271. (https://doi.org/10.1172/JCI119284)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galano M, Li Y, Li L, Sottas C & & Papadopoulos V 2021 Role of constitutive STAR in Leydig cells. International Journal of Molecular Sciences 22. (https://doi.org/10.3390/ijms22042021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatabu N, Amano N, Mori J, Hasegawa Y, Matsuura H, Sumitomo N, Nishizawa K, Suzuki M, Katakura S, Kanamoto N, et al.2019 Pubertal development and pregnancy outcomes in 46,XX patients with nonclassic lipoid congenital adrenal hyperplasia. Journal of Clinical Endocrinology and Metabolism 104 18661870. (https://doi.org/10.1210/jc.2018-01752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishii T, Fukuzawa R, Sato T, Muroya K, Adachi M, Ihara K, Igaki J, Hasegawa Y, Sato S, Mitsui T, et al.2016 Gonadal macrophage infiltration in congenital lipoid adrenal hyperplasia. European Journal of Endocrinology 175 127132. (https://doi.org/10.1530/EJE-16-0194)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishii T, Hasegawa T, Pai CI, Yvgi-Ohana N, Timberg R, Zhao L, Majdic G, Chung BC, Orly J & & Parker KL 2002 The roles of circulating high-density lipoproteins and trophic hormones in the phenotype of knockout mice lacking the steroidogenic acute regulatory protein. Molecular Endocrinology 16 22972309. (https://doi.org/10.1210/me.2001-0320)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishii T, Mitsui T, Suzuki S, Matsuzaki Y & & Hasegawa T 2012 A genome-wide expression profile of adrenocortical cells in knockout mice lacking steroidogenic acute regulatory protein. Endocrinology 153 27142723. (https://doi.org/10.1210/en.2011-1627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishii T, Tajima T, Kashimada K, Mukai T, Tanahashi Y, Katsumata N, Kanno J, Hamajima T, Miyako K, Ida S, et al.2020 Clinical features of 57 patients with lipoid congenital adrenal hyperplasia: criteria for nonclassic form revisited. Journal of Clinical Endocrinology and Metabolism 105 dgaa557. (https://doi.org/10.1210/clinem/dgaa557)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katsumata N, Horikawa R & & Tanaka T 2006 Replacement of alanine with asparagic acid at position 203 in human steroidogenic acute regulatory protein impairs the ability to enhance steroidogenesis in vitro. Endocrine Journal 53 427431. (https://doi.org/10.1507/endocrj.k05-174)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katsumata N, Kawada Y, Yamamoto Y, Noda M, Nimura A, Horikawa R & & Tanaka T 1999 A novel compound heterozygous mutation in the steroidogenic acute regulatory protein gene in a patient with congenital lipoid adrenal hyperplasia. Journal of Clinical Endocrinology and Metabolism 84 39833987. (https://doi.org/10.1210/jcem.84.11.6118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee J & & Jefcoate C 2017 Monitoring of dual CRISPR/Cas9-mediated steroidogenic acute regulatory protein gene deletion and cholesterol accumulation using high-resolution fluorescence in situ hybridization in a single cell. Frontiers in Endocrinology (Lausanne) 8 289. (https://doi.org/10.3389/fendo.2017.00289)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lehoux JG, Mathieu A, Lavigne P & & Fleury A 2003 Adrenocorticotropin regulation of steroidogenic acute regulatory protein. Microscopy Research and Technique 61 288299. (https://doi.org/10.1002/jemt.10338)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller WL 2013 Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology 379 6273. (https://doi.org/10.1016/j.mce.2013.04.014)

  • Mizuno Y, Ishii T & & Hasegawa T 2019 In vivo verification of the pathophysiology of lipoid congenital adrenal hyperplasia in the adrenal cortex. Endocrinology 160 331338. (https://doi.org/10.1210/en.2018-00777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakae J, Tajima T, Sugawara T, Arakane F, Hanaki K, Hotsubo T, Igarashi N, Igarashi Y, Ishii T, Koda N, et al.1997 Analysis of the steroidogenic acute regulatory protein (StAR) gene in Japanese patients with congenital lipoid adrenal hyperplasia. Human Molecular Genetics 6 571576. (https://doi.org/10.1093/hmg/6.4.571)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakajima D, Konno R, Miyashita Y, Ishikawa M, Ohara O & & Kawashima Y 2024 Proteome analysis of serum purified using Solanum tuberosum and Lycopersicon esculentum lectins. International Journal of Molecular Sciences 25 1315. (https://doi.org/10.3390/ijms25021315)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, et al.2013 Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Scientific Reports 3 3379. (https://doi.org/10.1038/srep03379)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki G, Ishii T, Jeyasuria P, Jo Y, Bahat A, Orly J, Hasegawa T & & Parker KL 2008 Complex role of the mitochondrial targeting signal in the function of steroidogenic acute regulatory protein revealed by bacterial artificial chromosome transgenesis in vivo. Molecular Endocrinology 22 951964. (https://doi.org/10.1210/me.2007-0493)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki G, Zubair M, Ishii T, Mitsui T, Hasegawa T & & Auchus RJ 2014 The contribution of serine 194 phosphorylation to steroidogenic acute regulatory protein function. Molecular Endocrinology 28 10881096. (https://doi.org/10.1210/me.2014-1028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Selvaraj V, Stocco DM & & Clark BJ 2018 Current knowledge on the acute regulation of steroidogenesis. Biology of Reproduction 99 1326. (https://doi.org/10.1093/biolre/ioy102)

    • PubMed
    • Search Google Scholar
    • Export Citation