CREB activates the MafA promoter through proximal E-boxes and a CCAAT motif in pancreatic β-cells

in Journal of Molecular Endocrinology
Authors:
Yuki Aida Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan

Search for other papers by Yuki Aida in
Current site
Google Scholar
PubMed
Close
and
Kohsuke Kataoka Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan

Search for other papers by Kohsuke Kataoka in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5685-3908

Correspondence should be addressed to K Kataoka: kkataoka@yokohama-cu.ac.jp
Restricted access
Rent on DeepDyve

Sign up for journal news

MafA is a key transcriptional regulator of pancreatic islet β-cell function. Its target genes include those encoding preproinsulin and the glucose transporter Glut2 (Slc2a2); thus, MafA function is essential for glucose-stimulated insulin secretion. Expression levels of MafA are reduced in β-cells of diabetic mouse models and human subjects, suggesting that β-cell dysfunction associated with type 2 diabetes is attributable to the loss of MafA. On the other hand, MafA is transcriptionally upregulated by incretin hormones through activation of CREB and its co-activator CRTC2. β-cell-specific expression of MafA relies on a distal enhancer element. However, the precise mechanism by which CREB-CRTC2 regulates the enhancer and proximal promoter regions of MafA remains unclear. In this report, we analyzed previously published ChIP-seq data and found that CREB and NeuroD1, a β-cell-enriched transactivator, bound to both the promoter and enhancer regions of human MAFA. A series of reporter assays revealed that CREB activated the enhancer through a conserved cAMP-responsive element (CRE) but stimulated MAFA promoter activity even when the putative CRE was deleted. Two E-box elements and a CCAAT motif, which bind NeuroD1 and ubiquitous NF-Y transcription factors, respectively, were necessary for transcriptional activation of the MAFA promoter by CREB. Genome-wide analysis of CREB-bound loci in β-cells revealed that they were enriched with CCAAT motifs. Furthermore, promoter analysis of the Isl1 gene encoding a β-cell-enriched transcription factor revealed that a CRE-like element and two CCAAT motifs, but not the E-box, were necessary for activation by CREB. These results provide clues to elucidate the detailed mechanism by which CREB regulates MafA as well as β-cell-specific genes.

Supplementary Materials

 

  • Collapse
  • Expand
  • Artner I, Le Lay J, Hang Y, Elghazi L, Schisler JC, Henderson E, Sosa-Pineda B & & Stein R 2006 MafB: an activator of the glucagon gene expressed in developing islet a- and b-cells. Diabetes 55 297304. (https://doi.org/10.2337/diabetes.55.02.06.db05-0946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, Magnuson MA & & Stein R 2010 MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes 59 25302539. (https://doi.org/10.2337/db10-0190)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bailey TL, Johnson J, Grant CE & & Noble WS 2015 The MEME suite. Nucleic Acids Research 43 W39W49. (https://doi.org/10.1093/nar/gkv416)

  • Bartolome A, Zhu C, Sussel L & & Pajvani UB 2019 Notch signaling dynamically regulates adult b cell proliferation and maturity. Journal of Clinical Investigation 129 268280. (https://doi.org/10.1172/JCI98098)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blanchet E, VandeVelde S, Matsumura S, Hao E, LeLay J, Kaestner K & & Montminy M 2015 Feedback inhibition of CREB signaling promotes beta cell dysfunction in insulin resistance. Cell Reports 10 11491157. (https://doi.org/10.1016/j.celrep.2015.01.046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bourane S, Garces A, Venteo S, Pattyn A, Hubert T, Fichard A, Puech S, Boukhaddaoui H, Baudet C, Takahashi S, et al.2009 Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron 64 857870. (https://doi.org/10.1016/j.neuron.2009.12.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen YJ, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, Yang C, Maehr R, Zhou Q, Shemer R, et al.2014 De novo formation of insulin-producing ‘neo-β cell islets’ from intestinal crypts. Cell Reports 6 10461058. (https://doi.org/10.1016/j.celrep.2014.02.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ch’ng TH, Uzgil B, Lin P, Avliyakulov NK, O’Dell TJ & & Martin KC 2012 Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 150 207221. (https://doi.org/10.1016/j.cell.2012.05.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dai C, Brissova M, Hang Y, Thompson C, Poffenberger G, Shostak A, Chen Z, Stein R & & Powers AC 2012 Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 55 707718. (https://doi.org/10.1007/s00125-011-2369-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dolfini D, Gatta R & & Mantovani R 2012 NF-Y and the transcriptional activation of CCAAT promoters. Critical Reviews in Biochemistry and Molecular Biology 47 2949. (https://doi.org/10.3109/10409238.2011.628970)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong C, Simonett SP, Shin S, Stapleton DS, Schueler KL, Churchill GA, Lu L, Liu X, Jin F, Li Y, et al.2021 INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants. Genome Biology 22 132. (https://doi.org/10.1186/s13059-021-02450-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eberhard CE, Fu A, Reeks C & & Screaton RA 2013 CRTC2 is required for β-cell function and proliferation. Endocrinology 154 23082317. (https://doi.org/10.1210/en.2012-2088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • El Khattabi I & & Sharma A 2013 Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress. Molecular Endocrinology 27 10781090. (https://doi.org/10.1210/me.2012-1346)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fleming JD, Pavesi G, Benatti P, Imbriano C, Mantovani R & & Struhl K 2013 NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors. Genome Research 23 11951209. (https://doi.org/10.1101/gr.148080.112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ganic E, Singh T, Luan C, Fadista J, Johansson JK, Cyphert HA, Bennet H, Storm P, Prost G, Ahlenius H, et al.2016 MafA-controlled nicotinic receptor expression is essential for insulin secretion and is impaired in patients with type 2 diabetes. Cell Reports 14 19912002. (https://doi.org/10.1016/j.celrep.2016.02.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo S, Dai C, Guo M, Taylor B, Harmon JS, Sander M, Robertson RP, Powers AC & & Stein R 2013 Inactivation of specific β cell transcription factors in type 2 diabetes. Journal of Biological Chemistry 123 33053316. (https://doi.org/10.1172/JCI65390.The)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han S-I, Aramata S, Yasuda K & & Kataoka K 2007 MafA stability in pancreatic β-cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Molecular and Cellular Biology 27 65936605. (https://doi.org/10.1128/MCB.01573-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoffman BG, Robertson G, Zavaglia B, Beach M, Cullum R, Lee S, Soukhatcheva G, Li L, Wederell ED, Thiessen N, et al.2010 Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. Genome Research 20 10371051. (https://doi.org/10.1101/gr.104356.109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inada A, Hamamoto Y, Tsuura Y, Miyazaki J, Toyokuni S, Ihara Y, Nagai K, Yamada Y, Bonner-Weir S & & Seino Y 2004 Overexpression of inducible cyclic AMP early repressor inhibits transactivation of genes and cell proliferation in pancreatic β cells. Molecular and Cellular Biology 24 28312841. (https://doi.org/10.1128/MCB.24.7.2831-2841.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jansson D, Ng ACH, Fu A, Depatie C, Al Azzabi M & & Screaton RA 2008 Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proceedings of the National Academy of Sciences of the United States of America 105 1016110166. (https://doi.org/10.1073/pnas.0800796105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M & & Montminy M 2003 cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes and Development 17 15751580. (https://doi.org/10.1101/gad.1097103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kajihara M, Sone H, Amemiya M, Katoh Y, Isogai M, Shimano H, Yamada N & & Takahashi S 2003 Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter. Biochemical and Biophysical Research Communications 312 831842. (https://doi.org/10.1016/j.bbrc.2003.10.196)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Noda M & & Nishizawa M 1994 Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Molecular and Cellular Biology 14 700712. (https://doi.org/10.1128/mcb.14.1.700-712.1994)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Yoshitomo-Nakagawa K, Shioda S & & Nishizawa M 2001a A set of Hox proteins interact with the Maf oncoprotein to inhibit its DNA binding, transactivation, and transforming activities. Journal of Biological Chemistry 276 819826. (https://doi.org/10.1074/jbc.M007643200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Shioda S, Yoshitomo-Nakagawa K, Handa H & & Nishizawa M 2001b Maf and Jun nuclear oncoproteins share downstream target genes for inducing cell transformation. Journal of Biological Chemistry 276 3684936856. (https://doi.org/10.1074/jbc.M102234200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Han SI, Shioda S, Hirai M, Nishizawa M & & Handa H 2002 MafA is a glucose-regulated and pancreatic β-cell-specific transcriptional activator for the insulin gene. Journal of Biological Chemistry 277 4990349910. (https://doi.org/10.1074/jbc.M206796200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Shioda S, Ando K, Sakagami K, Handa H & & Yasuda K 2004 Differentially expressed Maf family transcription factors, c-Maf and MafA, activate glucagon and insulin gene expression in pancreatic islet a- and b-cells. Journal of Molecular Endocrinology 32 920. (https://doi.org/10.1677/jme.0.0320009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katoh MC, Jung Y, Ugboma CM, Shimbo M, Kuno A, Basha WA, Kudo T, Oishi H & & Takahashib S 2018 MafB is critical for glucagon production and secretion in mouse pancreatic α cells in vivo. Molecular and Cellular Biology 38 117. (https://doi.org/10.1128/MCB.00504-17)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim S-J, Nian C, Widenmaier S & & McIntosh CHS 2008 Glucose-dependent insulinotropic polypeptide-mediated up-regulation of β-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Molecular and Cellular Biology 28 16441656. (https://doi.org/10.1128/MCB.00325-07)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kondo T, Khattabi El I, Nishimura W, Laybutt DR, Geraldes P, Shah S, King G, Bonner-Weir S, Weir G & & Sharma A 2009 p38 MAPK Is a major regulator of MafA protein stability under oxidative stress. Molecular Endocrinology 23 12811290. (https://doi.org/10.1210/me.2008-0482)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, et al.2005 The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437 11091111. (https://doi.org/10.1038/nature03967)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langmead B & & Salzberg SL 2012 Fast gapped-read alignment with Bowtie 2. Nature Methods 9 357359. (https://doi.org/10.1038/nmeth.1923)

  • Lecoin L, Rocques N, El-Yakoubi W, Achour SB, Larcher M, Pouponnot C & & Eychène A 2010 MafA transcription factor identifies the early ret-expressing sensory neurons. Developmental Neurobiology 70 485497. (https://doi.org/10.1002/dneu.20790)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Y, He S, Zhou R, Zhang X, Yang S, Deng D, Zhang C, Yu X, Chen Y & & Su Z 2021 Nuclear factor-Y in mouse pancreatic b-cells plays a crucial role in glucose homeostasis by regulating b-cell mass and insulin secretion. Diabetes 70 17031716. (https://doi.org/10.2337/DB20-1238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu TTH, Heyne S, Dror E, Casas E, Leonhardt L, Boenke T, Yang CH, Sagar AL, Dalgaard K, Teperino R, et al.2018 The polycomb-dependent epigenome controls β cell dysfunction, dedifferentiation, and diabetes. Cell Metabolism 27 1294-1308.e7. (https://doi.org/10.1016/j.cmet.2018.04.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lui WY, Wong EWP, Guan Y & & Lee WM 2007 Dual transcriptional control of claudin-11 via an overlapping GATA/NF-Y motif: positive regulation through the interaction of GATA, NF-YA, and CREB and negative regulation through the interaction of Smad, HDAC1, and mSin3A. Journal of Cellular Physiology 211 638648. (https://doi.org/10.1002/jcp.20970)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsuoka TA, Zhao L, Artner I, Jarrett HW, Friedman D, Means A & & Stein R 2003 Members of the large Maf transcription family regulate insulin gene transcription in islet β cells. Molecular and Cellular Biology 23 60496062. (https://doi.org/10.1128/MCB.23.17.6049-6062.2003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miyazaki JI, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y & & Yamamura KI 1990 Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127 126132. (https://doi.org/10.1210/endo-127-1-126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, Vonrhein C, Moras D, Romier C, Bolognesi M, et al.2013 Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell 152 132143. (https://doi.org/10.1016/j.cell.2012.11.047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S & & Sharma A 2006 A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Developmental Biology 293 526539. (https://doi.org/10.1016/j.ydbio.2006.02.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Noso S, Kataoka K, Kawabata Y, Babaya N, Hiromine Y, Yamaji K, Fujisawa T, Aramata S, Kudo T, Takahashi S, et al.2010 Insulin transactivator MafA regulates intrathymic expression of insulin and affects susceptibility to type 1 diabetes. Diabetes 59 25792587. (https://doi.org/10.2337/db10-0476)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olbrot M, Rud J, Moss LG & & Sharma A 2002 Identification of β-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proceedings of the National Academy of Sciences of the United States of America 99 67376742. (https://doi.org/10.1073/pnas.102168499)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oldfield AJ, Yang P, Conway AE, Cinghu S, Freudenberg JM, Yellaboina S & & Jothi R 2014 Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors. Molecular Cell 55 708722. (https://doi.org/10.1016/j.molcel.2014.07.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Onishi S & & Kataoka K 2019 Piasy is a Sumoylation-independent negative regulator of the insulin transactivator MafA. Journal of Molecular Endocrinology 63 297308. (https://doi.org/10.1530/JME-19-0172)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ono Y & & Kataoka K 2021 MafA, NeuroD1, and HNF1β synergistically activate the Slc2a2 (Glut2) gene in β-cells. Journal of Molecular Endocrinology 67 7182. (https://doi.org/10.1530/JME-20-0339)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parker D, Ferreri K, Nakajima T, Lamorte VJ, Evans R, Koerber SC, Hoeger C & & Montminy MR 1996 Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Molecular and Cellular Biology 16 694703. (https://doi.org/10.1128/MCB.16.2.694)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qi L, Saberi M, Zmuda E, Wang Y, Altarejos J, Zhang X, Dentin R, Hedrick S, Bandyopadhyay G, Hai T, et al.2009 Adipocyte CREB promotes insulin resistance in obesity. Cell Metabolism 9 277286. (https://doi.org/10.1016/j.cmet.2009.01.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raum JC, Gerrish K, Artner I, Henderson E, Guo M, Sussel L, Schisler JC, Newgard CB & & Stein R 2006 FoxA2, Nkx2.2, and PDX-1 regulate islet β-cell-specific mafA expression through conserved sequences located between base pairs −8118 and −7750 upstream from the transcription start site. Molecular and Cellular Biology 26 57355743. (https://doi.org/10.1128/MCB.00249-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raum JC, Hunter CS, Artner I, Henderson E, Guo M, Elghazi L, Sosa-Pineda B, Ogihara T, Mirmira RG, Sussel L, et al.2010 Islet β-cell-specific MafA transcription Requires the 5′-flanking conserved region 3 control domain. Molecular and Cellular Biology 30 42344244. (https://doi.org/10.1128/MCB.01396-09)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G & & Mesirov JP 2011 Integrative genomics viewer. Nature Biotechnology 29 2426. (https://doi.org/10.1038/nbt.1754)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sadaki S, Fujita R, Hayashi T, Nakamura A, Okamura Y, Fuseya S, Hamada M, Warabi E, Kuno A, Ishii A, et al.2023 Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination. Cell Reports 42 112289. (https://doi.org/10.1016/j.celrep.2023.112289)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR III, Takemori H, et al.2004 The CREB coactivator TORC2 functions as a calcium-and cAMP-sensitive coincidence detector. Cell 119 6174. (https://doi.org/10.1016/j.cell.2004.09.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor BL, Liu FF & & Sander M 2013 Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Reports 4 12621275. (https://doi.org/10.1016/j.celrep.2013.08.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tennant BR, Robertson AG, Kramer M, Li L, Zhang X, Beach M, Thiessen N, Chiu R, Mungall K, Whiting CJ, et al.2013 Identification and analysis of murine pancreatic islet enhancers. Diabetologia 56 542552. (https://doi.org/10.1007/s00125-012-2797-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van de Velde S, Wiater E, Tran M, Hwang Y, Cole PA & & Montminy M 2019 CREB promotes beta cell gene expression by targeting its coactivators to tissue-specific enhancers. Molecular and Cellular Biology 39 39.e0020039.e00219. (https://doi.org/10.1128/MCB.00200-19)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Brun T, Kataoka K, Sharma AJ & & Wollheim CB 2007 MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia 50 348358. (https://doi.org/10.1007/s00125-006-0490-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Sun J, Lin Z, Zhang W, Wang S, Wang W, Wang Q & & Ning G 2020 M6a mrna methylation controls functional maturation in neonatal murine β-cells. Diabetes 69 17081722. (https://doi.org/10.2337/db19-0906)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiafukaiti G, Maimaiti S, Ogata K, Kuno A, Kudo T, Shawki HH, Oishi H & & Takahashi S 2019 MafB is important for pancreatic β-cell maintenance under a MafA-deficient condition. Molecular and Cellular Biology 39 e00080-19. (https://doi.org/10.1128/MCB.00080-19)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang C, Moriguchi T, Kajihara M, Harada A, Shimohata H, Oishi H, Hamada M, Morito N, Hasegawa K, Kudo T, et al.2005 MafA is a key regulator of glucose-stimulated insulin secretion. Molecular and Cellular Biology 25 49694976. (https://doi.org/10.1128/MCB.25.12.4969)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, et al.2008 Model-based analysis of ChIP-Seq (MACS). Genome Biology 9 R137. (https://doi.org/10.1186/gb-2008-9-9-r137)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Guan Q, Liu Y, Zhang Y, Chen Y, Chen J, Liu Y & & Su Z 2018 Regulation of hepatic gluconeogenesis by nuclear factor Y transcription factor in mice. Journal of Biological Chemistry 293 78947904. (https://doi.org/10.1074/jbc.RA117.000508)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Q, Brown J, Kanarek A, Rajagopal J & & Melton DA 2008 In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455 627632. (https://doi.org/10.1038/nature07314)

    • PubMed
    • Search Google Scholar
    • Export Citation