circ_0134120: a new frontier in understanding postmenopausal osteoporosis pathogenesis

in Journal of Molecular Endocrinology
Authors:
Junling Wang Gynecologic Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Search for other papers by Junling Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0008-6847-8525
,
Hongyan Zhang Gynecologic Department, Hainan Traditional Chinese Medicine Hospital, Haikou, China

Search for other papers by Hongyan Zhang in
Current site
Google Scholar
PubMed
Close
,
Yue Cao Science and technology department, Guangzhou University of Chinese Medicine, Guangzhou, China

Search for other papers by Yue Cao in
Current site
Google Scholar
PubMed
Close
,
Irene Ma Gynecologic Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Search for other papers by Irene Ma in
Current site
Google Scholar
PubMed
Close
,
Xuefang Liang Gynecologic Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Search for other papers by Xuefang Liang in
Current site
Google Scholar
PubMed
Close
, and
Dongfang Xiang Gynecologic Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Search for other papers by Dongfang Xiang in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to D Xiang or X Liang: Dongfangx@126.com or liangxuefang@gzucm.edu.cn

*(J Wang and H Zhang contributed equally to this work)

Restricted access
Rent on DeepDyve

Sign up for journal news

Postmenopausal osteoporosis (OP) is a prevalent skeletal disease with not fully understood molecular mechanisms. This study aims to investigate the role of circular RNA (circRNA) in postmenopausal OP and to elucidate the potential mechanisms of the circRNA–miRNA–mRNA regulatory network. We obtained circRNA and miRNA expression profiles from postmenopausal OP patients from the Gene Expression Omnibus database. By identifying differentially expressed circRNAs and miRNAs, we constructed a circRNA–miRNA–mRNA network and identified key genes associated with OP. Further, through a range of experimental approaches, including dual-luciferase reporter assays, RNA pull-down experiments, and qRT-PCR, we examined the roles of circ_0134120, miR-590-5p, and STAT3 in the progression of OP. Our findings reveal that the interaction between circ_0134120 and miR-590-5p in regulating STAT3 gene expression is a key mechanism in OP, suggesting the circRNA–miRNA–mRNA network is a potential therapeutic target for this condition.

 

  • Collapse
  • Expand
  • Baccaro LF, Conde DM, Costa-Paiva L & & Pinto-Neto AM 2015 The epidemiology and management of postmenopausal osteoporosis: a viewpoint from Brazil. Clinical Interventions in Aging 10 583591. (https://doi.org/10.2147/CIA.S54614)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baldini V, Mastropasqua M, Francucci CM & & D'Erasmo E 2005 Cardiovascular disease and osteoporosis. Journal of Endocrinological Investigation 28(Supplement) 6972.

  • Chen Y, Sun C, Lu J, Zou L, Hu M, Yang Z & & Xu Y 2019 MicroRNA-590-5p antagonizes the inhibitory effect of high glucose on osteoblast differentiation by suppressing Smad7 in MC3T3-E1 cells. Journal of International Medical Research 47 17401748. (https://doi.org/10.1177/0300060519830212)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daly RM, Dalla Via J, Duckham RL, Fraser SF & & Helge EW 2019 Exercise for the prevention of osteoporosis in postmenopausal women: an evidence-based guide to the optimal prescription. Brazilian Journal of Physical Therapy 23 170180. (https://doi.org/10.1016/j.bjpt.2018.11.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diao W, Wang Y, Zhang J, Shao H, Huang Y & & Jin M 2021 Identification and comparison of novel circular RNAs with associated co-expression and competing endogenous RNA networks in postmenopausal osteoporosis. Journal of Orthopaedic Surgery and Research 16 459. (https://doi.org/10.1186/s13018-021-02604-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dong Q, Han Z & & Tian L 2022 Identification of serum exosome-derived circRNA-miRNA-TF-mRNA regulatory network in postmenopausal osteoporosis using bioinformatics analysis and validation in peripheral blood-derived mononuclear cells. Frontiers in Endocrinology (Lausanne) 13 899503. (https://doi.org/10.3389/fendo.2022.899503)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du W, Yin F, Zhong Y, Luo M, Wang Z, Lin P, Liu Q & & Yang H 2023 CircUCP2 promotes the tumor progression of non-small cell lung cancer through the miR-149/UCP2 pathway. Oncology Research 31 929936. (https://doi.org/10.32604/or.2023.030611)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eastell R & & Szulc P 2017 Use of bone turnover markers in postmenopausal osteoporosis. Lancet. Diabetes and Endocrinology 5 908923. (https://doi.org/10.1016/S2213-8587(1730184-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, Maridas DE, Clemmons DE, Brand MD & & Rosen CJ 2018 Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. Journal of Bone and Mineral Research 33 10521065. (https://doi.org/10.1002/jbmr.3390)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM & & Creed G 2011 Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database of Systematic Reviews 7 CD000333. (https://doi.org/10.1002/14651858.CD000333.pub2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, Aurilia C, Marini F, Giusti F & & Brandi ML 2023 Oxidative stress and inflammation in osteoporosis: molecular mechanisms involved and the relationship with microRNAs. International Journal of Molecular Sciences 24 3772. (https://doi.org/10.3390/ijms24043772)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jin D, Wu X, Yu H, Jiang L, Zhou P, Yao X, Meng J, Wang L, Zhang M & & Zhang Y 2018 Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis. American Journal of Translational Research 10 14981510.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones TL, Esa MS, Li KHC, Krishnan SRG, Elgallab GM, Pearce MS, Young DA & & Birrell FN 2021 Osteoporosis, fracture, osteoarthritis & sarcopenia: A systematic review of circulating microRNA association. Bone 152 116068. (https://doi.org/10.1016/j.bone.2021.116068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khandelwal A, Seam RK, Gupta M, Rana MK, Prakash H, Vasquez KM & & Jain A 2020 Circulating microRNA-590-5p functions as a liquid biopsy marker in non-small cell lung cancer. Cancer Science 111 826839. (https://doi.org/10.1111/cas.14199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lane NE 2006 Epidemiology, etiology, and diagnosis of osteoporosis. American Journal of Obstetrics and Gynecology 194(Supplement) S3S11. (https://doi.org/10.1016/j.ajog.2005.08.047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latourte A, Cherifi C, Maillet J, Ea HK, Bouaziz W, Funck-Brentano T, Cohen-Solal M, Hay E & & Richette P 2017 Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Annals of the Rheumatic Diseases 76 748755. (https://doi.org/10.1136/annrheumdis-2016-209757)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu A, Jiang B, Song C, Zhong Q, Mo Y, Yang R, Chen C, Peng C, Peng F & & Tang H 2023 Isoliquiritigenin inhibits circ0030018 to suppress glioma tumorigenesis via the miR-1236/HER2 signaling pathway. MedComm 4 e282. (https://doi.org/10.1002/mco2.282)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu P, Wang Z, Ou X, Wu P, Zhang Y, Wu S, Xiao X, Li Y, Ye F & & Tang H 2022 The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition. Molecular Cancer 21 198. (https://doi.org/10.1186/s12943-022-01653-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu-Ambrose T, Eng JJ, Khan KM, Carter ND & & McKay HA 2003 Older women with osteoporosis have increased postural sway and weaker quadriceps strength than counterparts with normal bone mass: overlooked determinants of fracture risk? Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 58 M862M866. (https://doi.org/10.1093/gerona/58.9.m862)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu S, Zhu N, Guo W, Wang X, Li K, Yan J, Jiang C, Han S, Xiang H & Wu X et al.2020 RNA-seq revealed a circular RNA-microRNA-mRNA regulatory network in Hantaan virus infection. Frontiers in Cellular and Infection Microbiology 10 97. (https://doi.org/10.3389/fcimb.2020.00097)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marjoribanks J, Farquhar C, Roberts H, Lethaby A & & Lee J 2017 Long-term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database of Systematic Reviews 1 CD004143. (https://doi.org/10.1002/14651858.CD004143.pub5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Minashima T, Zhang Y, Lee Y & & Kirsch T 2014 Lithium protects against cartilage degradation in osteoarthritis. Arthritis and Rheumatology 66 12281236. (https://doi.org/10.1002/art.38373)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK & & Tzanakakis GN 2012 The biology of small leucine-rich proteoglycans in bone pathophysiology. Journal of Biological Chemistry 287 3392633933. (https://doi.org/10.1074/jbc.R112.379602)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qiao L, Li CG & & Liu D 2020 CircRNA_0048211 protects postmenopausal osteoporosis through targeting miRNA-93-5p to regulate BMP2. European Review for Medical and Pharmacological Sciences 24 34593466. (https://doi.org/10.26355/eurrev_202004_20804)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang W, Mao J, Chen Y, Zuo J, Chen L, Li Y, Gao Y & & Lu Q 2022 Naringin promotes osteogenesis and ameliorates osteoporosis development by targeting JAK2/STAT3 signalling. Clinical and Experimental Pharmacology and Physiology 49 113121. (https://doi.org/10.1111/1440-1681.13591)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang X, Zhao D, Zhu Y, Dong Y & & Liu Y 2019 Long non-coding RNA GAS5 promotes osteogenic differentiation of bone marrow mesenchymal stem cells by regulating the miR-135a-5p/FOXO1 pathway. Molecular and Cellular Endocrinology 496 110534. (https://doi.org/10.1016/j.mce.2019.110534)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Zhan X, Luo W, Zhao L, Yang S, Chen D, Li Z & & Wang L 2019 GSK3beta inhibition suppresses the hepatic lipid accumulation in Schizothorax prenanti. Fish Physiology and Biochemistry 45 19531961. (https://doi.org/10.1007/s10695-019-00691-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Z, Yang L, Wu P, Li X, Tang Y, Ou X, Zhang Y, Xiao X, Wang J & & Tang H 2022 The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Molecular Cancer 21 29. (https://doi.org/10.1186/s12943-022-01498-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu S, Lu J, Zhu H, Wu F, Mo Y, Xie L, Song C, Liu L, Xie X & Li Y et al.2024 A novel axis of circKIF4A-miR-637-STAT3 promotes brain metastasis in triple-negative breast cancer. Cancer Letters 581 216508. (https://doi.org/10.1016/j.canlet.2023.216508)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu W, Fu J, Gu Y, Wei Y, Ma P & & Wu J 2020 JAK2/STAT3 regulates estrogen-related senescence of bone marrow stem cells. Journal of Endocrinology 245 141153. (https://doi.org/10.1530/JOE-19-0518)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y, Chen Q, Zhou S, Gong X, Xu H, Hong Y, Dai Q & & Jiang L 2020 Skeletal phenotype analysis of a conditional Stat3 deletion mouse model. Journal of Visualized Experiments 161 e61390. (https://doi.org/10.3791/61390)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu L & & Liu Y 2019 circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochemical and Biophysical Research Communications 516 546550. (https://doi.org/10.1016/j.bbrc.2019.06.087)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu T, You X, Zhou H, He W, Li Z, Li B, Xia J, Zhu H, Zhao Y & Yu G et al.2020 MiR-16-5p regulates postmenopausal osteoporosis by directly targeting VEGFA. Aging 12 95009514. (https://doi.org/10.18632/aging.103223)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang M, Bai X, Zeng X, Liu J, Liu F & & Zhang Z 2021 circRNA-miRNA-mRNA in breast cancer. Clinica Chimica Acta 523 120130. (https://doi.org/10.1016/j.cca.2021.09.013)

  • Zhou Z, Qin J, Song C, Wu T, Quan Q, Zhang Y, Zou Y, Liu L, Tang H & & Zhao J 2023 circROBO1 promotes prostate cancer growth and enzalutamide resistance via accelerating glycolysis. Journal of Cancer 14 25742584. (https://doi.org/10.7150/jca.86940)

    • PubMed
    • Search Google Scholar
    • Export Citation