Oxidative and ER stress by elevated insulin biosynthesis and palmitic acid in insulin-producing cells

in Journal of Molecular Endocrinology
Authors:
Brenda Vidrio-Huerta Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany

Search for other papers by Brenda Vidrio-Huerta in
Current site
Google Scholar
PubMed
Close
,
Thomas Plötz Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany

Search for other papers by Thomas Plötz in
Current site
Google Scholar
PubMed
Close
, and
Stephan Lortz Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany

Search for other papers by Stephan Lortz in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3392-8978

Correspondence should be addressed to S Lortz: lortz.stephan@mh-hannover.de
Restricted access
Rent on DeepDyve

Sign up for journal news

The early phase of type 2 diabetes mellitus (T2DM) is characterised by insulin resistance, which can initially be compensated by elevated insulin secretion. However, as postulated by the workload hypothesis, over time harming insulin requirements contribute to β-cell dysfunction and death. The mechanisms behind this transition are complex and not fully understood but involve factors such as endoplasmic reticulum (ER) stress raised by gluco/lipotoxicity. To investigate the effect of excessive insulin folding on ER luminal H2O2 generation, ER stress and viability, insulin was expressed glucose-independently by a doxycycline-regulated Tet-On system in insulin-producing RINm5F cells. Additionally, the effect of palmitic acid (PA) as a subsidiary T2DM-associated factor was examined in this model system. Elevated insulin expression increased ER luminal H2O2 concentration quantified by the fluorescent sensor protein TriPer and reduced viability, but did not activate apoptosis. However, when combined with PA, insulin expression resulted in a significant increase in ER stress and apoptosis. Expression of ER-localised catalase verified the specificity of the applied H2O2 detection method without attenuating ER stress, caspase activation or viability loss. These findings suggest that hyperinsulinism alone can cause increased ER luminal H2O2 generation, mild ER stress and reduced viability, while hyperinsulinism in combination with PA accelerates these processes and triggers apoptosis. The inability of ER catalase to counteract these effects suggests that further damaging factors besides H2O2 are involved in cell dysfunction. Finally, reducing the high insulin demand in the initial phase of T2DM may be crucial in preventing further β-cell damage caused by gluco/lipotoxicity.

Supplementary Materials

 

  • Collapse
  • Expand
  • Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Meneur C & & Bernal-Mizrachi E 2015 Natural history of beta-cell adaptation and failure in type 2 diabetes. Molecular Aspects of Medicine 42 1941. (https://doi.org/10.1016/j.mam.2014.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arya VB, Rahman S, Senniappan S, Flanagan SE, Ellard S & & Hussain K 2014 HNF4A mutation: switch from hyperinsulinaemic hypoglycaemia to maturity-onset diabetes of the young, and incretin response. Diabetic Medicine 31 e11e15. (https://doi.org/10.1111/dme.12369)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bestetti S, Galli M, Sorrentino I, Pinton P, Rimessi A, Sitia R & & Medrano-Fernandez I 2020 Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biology 28 101326. (https://doi.org/10.1016/j.redox.2019.101326)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bulleid NJ 2012 Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harbor Perspectives in Biology 4 a013219. (https://doi.org/10.1101/cshperspect.a013219)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cunha DA, Hekerman P, Ladriere L, Bazarra-Castro A, Ortis F, Wakeham MC, Moore F, Rasschaert J, Cardozo AK, Bellomo E, et al.2008 Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. Journal of Cell Science 121 23082318. (https://doi.org/10.1242/jcs.026062)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Delaunay-Moisan A & & Appenzeller-Herzog C 2015 The antioxidant machinery of the endoplasmic reticulum: protection and signaling. Free Radical Biology and Medicine 83 341351. (https://doi.org/10.1016/j.freeradbiomed.2015.02.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eizirik DL, Pasquali L & & Cnop M 2020 Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nature Reviews. Endocrinology 16 349362. (https://doi.org/10.1038/s41574-020-0355-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Esser N, Utzschneider KM & & Kahn SE 2020 Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 63 20072021. (https://doi.org/10.1007/s00125-020-05245-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gehrmann W, Wurdemann W, Plotz T, Jorns A, Lenzen S & & Elsner M 2015 Antagonism between saturated and unsaturated fatty acids in ROS Mediated Lipotoxicity in rat insulin-producing cells. Cellular Physiology and Biochemistry 36 852865. (https://doi.org/10.1159/000430261)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ha J, Satin LS & & Sherman AS 2016 A mathematical model of the pathogenesis, prevention, and reversal of Type 2 diabetes. Endocrinology 157 624635. (https://doi.org/10.1210/en.2015-1564)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han J & & Kaufman RJ 2016 The role of ER stress in lipid metabolism and lipotoxicity. Journal of Lipid Research 57 13291338. (https://doi.org/10.1194/jlr.R067595)

  • Hasnain SZ, Prins JB & & McGuckin MA 2016 Oxidative and endoplasmic reticulum stress in beta-cell dysfunction in diabetes. Journal of Molecular Endocrinology 56 R33R54. (https://doi.org/10.1530/JME-15-0232)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hassler JR, Scheuner DL, Wang S, Han J, Kodali VK, Li P, Nguyen J, George JS, Davis C, Wu SP, et al.2015 The IRE1alpha/XBP1s pathway is essential for the glucose response and protection of beta cells. PLoS Biology 13 e1002277. (https://doi.org/10.1371/journal.pbio.1002277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hetz C, Zhang K & & Kaufman RJ 2020 Mechanisms, regulation and functions of the unfolded protein response. Nature Reviews Molecular Cell Biology 21 421438. (https://doi.org/10.1038/s41580-020-0250-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kahn SE, Hull RL & & Utzschneider KM 2006 Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444 840846. (https://doi.org/10.1038/nature05482)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schurmann A, et al.2018 Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology 14 140162. (https://doi.org/10.1038/nrendo.2017.161)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krüger C, Waldeck-Weiermair M, Kaynert J, Pokrant T, Komaragiri Y, Otto O, Michel T & & Elsner M 2021 AQP8 is a crucial H2O2 transporter in insulin-producing RINm5F cells. Redox Biology 43 101962. (https://doi.org/10.1016/j.redox.2021.101962)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee AH, Iwakoshi NN & & Glimcher LH 2003 XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology 23 74487459. (https://doi.org/10.1128/MCB.23.21.7448-7459.2003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ & & Arvan P 2018 Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism 20(Supplement 2) 2850. (https://doi.org/10.1111/dom.13378)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lortz S, Lenzen S & & Mehmeti I 2015 N-glycosylation-negative catalase: a useful tool for exploring the role of hydrogen peroxide in the endoplasmic reticulum. Free Radical Biology and Medicine 80 7783. (https://doi.org/10.1016/j.freeradbiomed.2014.11.024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, Wiederkehr A, Wollheim CB, Lee IK & & Park KS 2017 Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Experimental and Molecular Medicine 49 e291. (https://doi.org/10.1038/emm.2016.157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mehmeti I, Lortz S & & Lenzen S 2012 The H2O2-sensitive HyPer protein targeted to the endoplasmic reticulum as a mirror of the oxidizing thiol-disulfide milieu. Free Radical Biology and Medicine 53 14511458. (https://doi.org/10.1016/j.freeradbiomed.2012.08.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mehmeti I, Lortz S, Elsner M & & Lenzen S 2014 Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells. Journal of Biological Chemistry 289 2690426913. (https://doi.org/10.1074/jbc.M114.568329)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Melo EP, Lopes C, Gollwitzer P, Lortz S, Lenzen S, Mehmeti I, Kaminski CF, Ron D & & Avezov E 2017 TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H2O2. BMC Biology 15 24. (https://doi.org/10.1186/s12915-017-0367-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nemecz M, Constantin A, Dumitrescu M, Alexandru N, Filippi A, Tanko G & & Georgescu A 2018 The distinct effects of palmitic and oleic acid on pancreatic beta cell function: the elucidation of associated mechanisms and effector molecules. Frontiers in Pharmacology 9 1554. (https://doi.org/10.3389/fphar.2018.01554)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Newsholme P, Keane KN, Carlessi R & & Cruzat V 2019 Oxidative stress pathways in pancreatic beta-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. American Journal of Physiology. Cell Physiology 317 C420C433. (https://doi.org/10.1152/ajpcell.00141.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oh YS, Bae GD, Baek DJ, Park EY & & Jun HS 2018 Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of Type 2 diabetes. Frontiers in Endocrinology (Lausanne) 9 384. (https://doi.org/10.3389/fendo.2018.00384)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rahier J, Guiot Y, Goebbels RM, Sempoux C & & Henquin JC 2008 Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes, Obesity and Metabolism 10(Supplement 4) 3242. (https://doi.org/10.1111/j.1463-1326.2008.00969.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sah SP, Singh B, Choudhary S & & Kumar A 2016 Animal models of insulin resistance: a review. Pharmacological Reports 68 11651177. (https://doi.org/10.1016/j.pharep.2016.07.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki H, Saisho Y, Inaishi J, Watanabe Y, Tsuchiya T, Makio M, Sato M, Nishikawa M, Kitago M, Yamada T, et al.2021 Reduced beta cell number rather than size is a major contributor to beta cell loss in type 2 diabetes. Diabetologia 64 18161821. (https://doi.org/10.1007/s00125-021-05467-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sies H & & Jones DP 2020 Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21 363383. (https://doi.org/10.1038/s41580-020-0230-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sobczak AIS, Blindauer CA & & Stewart AJ 2019 Changes in plasma free fatty acids associated with Type-2 diabetes. Nutrients 11 2022. (https://doi.org/10.3390/nu11092022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun J, Cui J, He Q, Chen Z, Arvan P & & Liu M 2015 Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Molecular Aspects of Medicine 42 105118. (https://doi.org/10.1016/j.mam.2015.01.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Swisa A, Glaser B & & Dor Y 2017 Metabolic stress and compromised identity of pancreatic beta cells. Frontiers in Genetics 8 21. (https://doi.org/10.3389/fgene.2017.00021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Talchai C, Xuan S, Lin HV, Sussel L & & Accili D 2012 Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150 12231234. (https://doi.org/10.1016/j.cell.2012.07.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tavender TJ, Springate JJ & & Bulleid NJ 2010 Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO Journal 29 41854197. (https://doi.org/10.1038/emboj.2010.273)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Terra LF, Wailemann RAM, Dos Santos AF, Gomes VM, Silva RP, Laporte A, Meotti FC, Terra WR, Palmisano G, Lortz S, et al.2019 Heat shock protein B1 is a key mediator of prolactin-induced beta-cell cytoprotection against oxidative stress. Free Radical Biology and Medicine 134 394405. (https://doi.org/10.1016/j.freeradbiomed.2019.01.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tiedge M, Lortz S, Munday R & & Lenzen S 1998 Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 47 15781585. (https://doi.org/10.2337/diabetes.47.10.1578)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tornovsky-Babeay S, Weinberg-Corem N, Ben-Haroush Schyr R, Avrahami D, Lavi J, Feleke E, Kaestner KH, Dor Y & & Glaser B 2021 Biphasic dynamics of beta cell mass in a mouse model of congenital hyperinsulinism: implications for type 2 diabetes. Diabetologia 64 11331143. (doi:10.1007/s00125-021-05390-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsuchiya Y, Saito M, Kadokura H, Miyazaki JI, Tashiro F, Imagawa Y, Iwawaki T & & Kohno K 2018 IRE1-XBP1 pathway regulates oxidative proinsulin folding in pancreatic beta cells. Journal of Cell Biology 217 12871301. (https://doi.org/10.1083/jcb.201707143)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weir GC, Gaglia J & & Bonner-Weir S 2020 Inadequate beta-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes and Endocrinology 8 249256. (https://doi.org/10.1016/S2213-8587(2030022-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng Y, Ley SH & & Hu FB 2018 Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology 14 8898. (https://doi.org/10.1038/nrendo.2017.151)

    • PubMed
    • Search Google Scholar
    • Export Citation