Pseudohypoparathyroidism: complex disease variants with unfortunate names

in Journal of Molecular Endocrinology
Author:
Harald Jüppner Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Harald Jüppner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7491-0515

Correspondence should be addressed to H Jüppner: hjueppner@partners.org
Restricted access
Rent on DeepDyve

Sign up for journal news

Several human disorders are caused by genetic or epigenetic changes involving the GNAS locus on chromosome 20q13.3 that encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Thus, pseudohypoparathyroidism type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal GNAS exons 1–13 resulting in characteristic abnormalities referred to as Albright’s hereditary osteodystrophy (AHO) that are associated with resistance to several agonist ligands, particularly to parathyroid hormone (PTH), thereby leading to hypocalcemia and hyperphosphatemia. GNAS mutations involving the paternal Gsα exons also cause most of these AHO features, but without evidence for hormonal resistance, hence the term pseudopseudohypoparathyroidism (PPHP). Autosomal dominant pseudohypoparathyroidism type Ib (PHP1B) due to maternal GNAS or STX16 mutations (deletions, duplications, insertions, and inversions) is associated with epigenetic changes at one or several differentially methylated regions (DMRs) within GNAS. Unlike the inactivating Gsα mutations that cause PHP1A and PPHP, hormonal resistance is caused in all PHP1B variants by impaired Gsα expression due to loss of methylation at GNAS exon A/B, which can be associated in some familial cases with epigenetic changes at the other maternal GNAS DMRs. The genetic defect(s) responsible for sporadic PHP1B, the most frequent variant of this disorder, remain(s) unknown for the majority of patients. However, characteristic epigenetic GNAS changes can be readily detected that include a gain of methylation at the neuroendocrine secretory protein (NESP) DMR. Multiple genetic or epigenetic GNAS abnormalities can thus impair Gsα function or expression, consequently leading to inadequate cAMP-dependent signaling events downstream of various Gsα-coupled receptors.

 

  • Collapse
  • Expand
  • Abramowitz J, Grenet D, Birnbaumer M, Torres HN & & Birnbaumer L 2004 XLalphas, the extra-long form of the alpha-subunit of the Gs G protein, is significantly longer than suspected, and so is its companion Alex. PNAS 101 83668371. (https://doi.org/10.1073/pnas.0308758101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Albright F, Burnett CH, Smith PH & & Parson W 1942 Pseudohypoparathyroidism - an example of “Seabright-Bantam syndrome”. Endocrinology 30 922932.

  • Albright F, Forbes AP & & Henneman PH 1952 Pseudo-pseudohypoparathyroidism. Transactions of the Association of American Physicians 65 337350.

  • Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G & & Van den Veyver IB 2021 DNA methylation dynamics in the female germline and maternal-effect mutations that disrupt genomic imprinting. Genes 12. (https://doi.org/10.3390/genes12081214)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bastepe M & & Jüppner H 2023 Pseudohypoparathyroidism, Albright's hereditary osteodystrophy, and progressive osseous heteroplasia: disorders caused by inactivating GNAS mutations that reduce Gsα activity. In Endocrinology, 8th ed. Robertson RP Ed. Philadelphia, PA, USA: W.B. Saunders Company.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bastepe M, Lane AH & & Jüppner H 2001 Paternal uniparental isodisomy of chromosome 20q (patUPD20q) - and the resulting changes in GNAS1 methylation - as a plausible cause of pseudohypoparathyroidism. American Journal of Human Genetics 68 12831289. (https://doi.org/10.1086/320117)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bastepe M, Fröhlich LF, Linglart A, Abu-Zahra HS, Tojo K, Ward LM & & Jüppner H 2005 Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nature Genetics 37 2527. (https://doi.org/10.1038/ng1487)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bastepe M, Altug-Teber O, Agarwal C, Oberfield SE, Bonin M & & Jüppner H 2011 Paternal uniparental isodisomy of the entire chromosome 20 as a molecular cause of pseudohypoparathyroidism type Ib (PHP-Ib). Bone 48 659662. (https://doi.org/10.1016/j.bone.2010.10.168)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bray P, Carter A, Simons C, Guo V, Puckett C, Kamholz J, Spiegel A & & Nirenberg M 1986 Human cDNA clones for four species of G alpha s signal transduction protein. PNAS 83 88938897. (https://doi.org/10.1073/pnas.83.23.8893)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bréhin AC, Colson C, Maupetit-Mehouas S, Grybek V, Richard N, Linglart A, Kottler ML & & Jüppner H 2015 Loss of methylation at GNAS exon A/B is associated with increased intrauterine growth. Journal of Clinical Endocrinology and Metabolism 100 E623E631. (https://doi.org/10.1210/jc.2014-4047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Butcher RW & & Sutherland EW 1962 Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. Journal of Biological Chemistry 237 12441250. (https://doi.org/10.1016/S0021-9258(1860316-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chase LR & & Aurbach GD 1967 Parathyroid function and the renal excretion of 3'5'-adenylic acid. PNAS 58 518525. (https://doi.org/10.1073/pnas.58.2.518)

  • Chase LR & & Aurbach GD 1968 Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science 159 545547. (https://doi.org/10.1126/science.159.3814.545)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chase LR & & Aurbach GD 1970 The effect of parathyroid hormone on the concentration of adenosine 3',5'-monophosphate in skeletal tissue in vitro. Journal of Biological Chemistry 245 15201526. (https://doi.org/10.1016/S0021-9258(1977126-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chase LR, Fedak SA & & Aurbach GD 1969a Activation of skeletal adenyl cyclase by parathyroid hormone in vitro. Endocrinology 84 761768. (https://doi.org/10.1210/endo-84-4-761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chase LR, Melson GL & & Aurbach GD 1969b Pseudohypoparathyroidism: defective excretion of 3',5'-AMP in response to parathyroid hormone. Journal of Clinical Investigation 48 18321844. (https://doi.org/10.1172/JCI106149)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chillambhi S, Turan S, Hwang DY, Chen HC, Jüppner H & & Bastepe M 2010 Deletion of the noncoding GNAS antisense transcript causes pseudohypoparathyroidism type Ib and biparental defects of GNAS methylation in cis. Journal of Clinical Endocrinology and Metabolism 95 39934002. (https://doi.org/10.1210/jc.2009-2205)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chotalia M, Smallwood SA, Ruf N, Dawson C, Lucifero D, Frontera M, James K, Dean W & & Kelsey G 2009 Transcription is required for establishment of germline methylation marks at imprinted genes. Genes and Development 23 105117. (https://doi.org/10.1101/gad.495809)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chudoba I, Franke Y, Senger G, Sauerbrei G, Demuth S, Beensen V, Neumann A, Hansmann I & & Claussen U 1999 Maternal UPD 20 in a hyperactive child with severe growth retardation. European Journal of Human Genetics 7 533540. (https://doi.org/10.1038/sj.ejhg.5200287)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Colson C, Decamp M, Gruchy N, Coudray N, Ballandonne C, Bracquemart C, Molin A, Mittre H, Takatani R, Jüppner H, et al.2019 High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone 123 145152. (https://doi.org/10.1016/j.bone.2019.03.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cooper DM, Boyajian CL, Goldsmith PK, Unson CG & & Spiegel A 1990 Differential expression of low molecular weight form of Gs-alpha in neostriatum and cerebellum: correlation with expression of calmodulin-independent adenylyl cyclase. Brain Research 523 143146. (https://doi.org/10.1016/0006-8993(9091648-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Danzig J, Li D, Jan de Beur S & & Levine MA 2021 High-throughput molecular analysis of pseudohypoparathyroidism 1b patients reveals novel genetic and epigenetic defects. Journal of Clinical Endocrinology and Metabolism 106 e4603e4620. (https://doi.org/10.1210/clinem/dgab460)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davies SJ & & Hughes HE 1993 Imprinting in Albright's hereditary osteodystrophy. Journal of Medical Genetics 30 101103. (https://doi.org/10.1136/jmg.30.2.101)

  • Dixit A, Chandler KE, Lever M, Poole RL, Bullman H, Mughal MZ, Steggall M & & Suri M 2013 Pseudohypoparathyroidism type 1b due to paternal uniparental disomy of chromosome 20q. Journal of Clinical Endocrinology and Metabolism 98 E103E108. (https://doi.org/10.1210/jc.2012-2639)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elli FM, De Sanctis L, Bollati V, Tarantini L, Filopanti M, Barbieri AM, Peverelli E, Beck-Peccoz P, Spada A & & Mantovani G 2014a Quantitative analysis of methylation defects and correlation with clinical characteristics in patients with pseudohypoparathyroidism type I and GNAS epigenetic alterations. Journal of Clinical Endocrinology and Metabolism 99 E508E517. (https://doi.org/10.1210/jc.2013-3086)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elli FM, De Sanctis L, Peverelli E, Bordogna P, Pivetta B, Miolo G, Beck-Peccoz P, Spada A & & Mantovani G 2014b Autosomal dominant pseudohypoparathyroidism type Ib: a novel inherited deletion ablating STX16 causes loss of imprinting at the A/B DMR. Journal of Clinical Endocrinology and Metabolism 99 E724E728. (https://doi.org/10.1210/jc.2013-3704)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elli FM, Linglart A, Garin I, De Sanctis L, Bordogna P, Grybek V, Pereda A, Giachero F, Verrua E, Hanna P, et al.2016 The prevalence of GNAS deficiency-related diseases in a large cohort of patients characterized by the EuroPHP network. Journal of Clinical Endocrinology and Metabolism 101 36573668. (https://doi.org/10.1210/jc.2015-4310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elrick H, Albright F, Bartter FC, Forbes AP & & Reeves JD 1950 Further studies on pseudo-hypoparathyroidism: report of four new cases. Acta Endocrinologica 5 199225. (https://doi.org/10.1530/acta.0.0050199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farfel Z, Brickman AS, Kaslow HR, Brothers VM & & Bourne HR 1980 Defect of receptor-cyclase coupling protein in pseudohypoparathyroidism. New England Journal of Medicine 303 237242. (https://doi.org/10.1056/NEJM198007313030501)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernandez M, Zambrano MJ, Riquelme J, Castiglioni C, Kottler ML, Jüppner H & & Mericq V 2017 Pseudohypoparathyroidism type 1B associated with assisted reproductive technology. Journal of Pediatric Endocrinology and Metabolism 30 11251132. (https://doi.org/10.1515/jpem-2017-0226)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernández-Rebollo E, Pérez De Nanclares G, Lecumberri B, Turan S, Anda E, Pérez De Nanclares G, Feig D, Nik-Zainal S, Bastepe M & & Jüppner H 2011 Exclusion of the GNAS locus in PHP-Ib patients with broad GNAS methylation changes: evidence for an autosomal recessive form of PHP-Ib? Journal of Bone and Mineral Research 26 18541863. (https://doi.org/10.1002/jbmr.408)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fröhlich LF, Bastepe M, Ozturk D, Abu-Zahra H & & Jüppner H 2007 Lack of Gnas epigenetic changes and pseudohypoparathyroidism type Ib in mice with targeted disruption of syntaxin-16. Endocrinology 148 29252935. (https://doi.org/10.1210/en.2006-1298)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fröhlich LF, Mrakovcic M, Steinborn R, Chung UI, Bastepe M & & Jüppner H 2010 Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. PNAS 107 92759280. (https://doi.org/10.1073/pnas.0910224107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gahurova L, Tomizawa SI, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J, Andrews SR, Chen T & & Kelsey G 2017 Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenetics and Chromatin 10 25. (https://doi.org/10.1186/s13072-017-0133-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Genevieve D, Sanlaville D, Faivre L, Kottler ML, Jambou M, Gosset P, Boustani-Samara D, Pinto G, Ozilou C, Abeguile G, et al.2005 Paternal deletion of the GNAS imprinted locus (including Gnasxl) in two girls presenting with severe pre- and post-natal growth retardation and intractable feeding difficulties. European Journal of Human Genetics 13 10331039. (https://doi.org/10.1038/sj.ejhg.5201448)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Germain-Lee EL, Ding CL, Deng Z, Crane JL, Saji M, Ringel MD & & Levine MA 2002 Paternal imprinting of Galpha(s) in the human thyroid as the basis of TSH resistance in pseudohypoparathyroidism type 1a. Biochemical and Biophysical Research Communications 296 6772. (https://doi.org/10.1016/s0006-291x(0200833-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goel NJ, Meyers LL & & Frangos M 2018 Pseudohypoparathyroidism type 1B in a patient conceived by in vitro fertilization: another imprinting disorder reported with assisted reproductive technology. Journal of Assisted Reproduction and Genetics 35 975979. (https://doi.org/10.1007/s10815-018-1129-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grigelioniene G, Nevalainen PI, Reyes M, Thiele S, Tafaj O, Molinaro A, Takatani R, Ala-Houhala M, Nilsson D, Eisfeldt J, et al.2017 A large inversion involving GNAS exon A/B and all exons encoding gsalpha is associated with autosomal dominant pseudohypoparathyroidism type Ib (PHP1B). Journal of Bone and Mineral Research 32 776783. (https://doi.org/10.1002/jbmr.3083)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grüters-Kieslich A, Reyes M, Sharma A, Demirci C, Declue TJ, Lankes E, Tiosano D, Schnabel D & & Jüppner H 2017 Early-onset obesity: unrecognized first evidence for GNAS mutations and methylation changes. Journal of Clinical Endocrinology and Metabolism 102 26702677. (https://doi.org/10.1210/jc.2017-00395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X, Wei Y, et al.2015 The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161 14371452. (https://doi.org/10.1016/j.cell.2015.05.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanna P, Grybek V, Perez De Nanclares G, Tran LC, De Sanctis L, Elli F, Errea J, Francou B, Kamenicky P, Linglart L, et al.2018 Genetic and epigenetic defects at the GNAS locus lead to distinct patterns of skeletal growth but similar early-onset obesity. Journal of Bone and Mineral Research 33 14801488. (https://doi.org/10.1002/jbmr.3450)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hayward BE & & Bonthron DT 2000 An imprinted antisense transcript at the human GNAS1 locus. Human Molecular Genetics 9 835841. (https://doi.org/10.1093/hmg/9.5.835)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hayward BE, Moran V, Strain L & & Bonthron DT 1998 Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. PNAS 95 1547515480. (https://doi.org/10.1073/pnas.95.26.15475)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A & & Bonthron DT 2001 Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. Journal of Clinical Investigation 107 R31R36. (https://doi.org/10.1172/JCI11887)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ischia R, Lovisetti-Scamihorn P, Hogue-Angeletti R, Wolkersdorfer M, Winkler H & & Fischer-Colbrie R 1997 Molecular cloning and characterization of NESP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. Journal of Biological Chemistry 272 1165711662. (https://doi.org/10.1074/jbc.272.17.11657)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwasaki Y, Aksu C, Reyes M, Ay B, He Q & & Bastepe M 2023 The long-range interaction between two GNAS imprinting control regions delineates pseudohypoparathyroidism type 1B pathogenesis. Journal of Clinical Investigation 133. (https://doi.org/10.1172/JCI167953)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jan de Beur S, Ding C, Germain-Lee E, Cho J, Maret A & & Levine MA 2003 Discordance between genetic and epigenetic defects in pseudohypoparathyroidism type 1b revealed by inconsistent loss of maternal imprinting at GNAS1. American Journal of Human Genetics 73 314322. (https://doi.org/10.1086/377136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawashima S, Nakamura A, Inoue T, Matsubara K, Horikawa R, Wakui K, Takano K, Fukushima Y, Tatematsu T, Mizuno S, et al.2018 Maternal uniparental disomy for Chromosome 20: physical and endocrinological characteristics of five patients. Journal of Clinical Endocrinology and Metabolism 103 20832088. (https://doi.org/10.1210/jc.2017-02780)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawashima S, Yuno A, Sano S, Nakamura A, Ishiwata K, Kawasaki T, Hosomichi K, Nakabayashi K, Akutsu H, Saitsu H, et al.2022 Familial pseudohypoparathyroidism type IB associated with an SVA retrotransposon insertion in the GNAS locus. Journal of Bone and Mineral Research 37 18501859. (https://doi.org/10.1002/jbmr.4652)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keidai Y, Iwasaki Y, Iwasaki K, Honjo S, Bastepe M & & Hamasaki A 2022 Sporadic pseudohypoparathyroidism Type 1B in monozygotic twins: insights into the pathogenesis of methylation defects. Journal of Clinical Endocrinology and Metabolism 107 e947e954. (https://doi.org/10.1210/clinem/dgab801)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kiuchi Z, Reyes M, Hanna P, Sharma A, Declue T, Olney RC, Tebben P & & Jüppner H 2022 Progression of PTH resistance in autosomal dominant pseudohypoparathyroidism type Ib due to maternal STX16 deletions. Journal of Clinical Endocrinology and Metabolism 107 e681e687. (https://doi.org/10.1210/clinem/dgab660)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kozasa T, Itoh H, Tsukamoto T & & Kaziro Y 1988 Isolation and characterization of the human Gs alpha gene. PNAS 85 20812085. (https://doi.org/10.1073/pnas.85.7.2081)

  • Lemos MC & & Thakker RV 2015 GNAS mutations in Pseudohypoparathyroidism type 1a and related disorders. Human Mutation 36 1119. (https://doi.org/10.1002/humu.22696)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Levine MA 2002 Pseudohypoparathyroidism. In Principles of Bone Biology. Bilezikian JP & & LR Rodan Eds. New York, NY, USA: Academic Press.

  • Levine MA 2005 Hypoparathyroidism and pseudohypoparathyroidism. In Endocrinology. DeGroot L, & Jameson J Eds. Philadelphia, PA, USA: W.B. Saunders Company.

  • Levine MA, Downs RW, Singer M, Marx SJ, Aurbach GD & & Spiegel AM 1980 Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism. Biochemical and Biophysical Research Communications 94 13191324. (https://doi.org/10.1016/0006-291x(8090563-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linglart A, Gensure RC, Olney RC, Jüppner H & & Bastepe M 2005 A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. American Journal of Human Genetics 76 804814. (https://doi.org/10.1086/429932)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linglart A, Bastepe M & & Jüppner H 2007 Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the GNAS locus. Clinical Endocrinology 67 822831. (https://doi.org/10.1111/j.1365-2265.2007.02969.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linglart A, Levine MA & & Jüppner H 2018 Pseudohypoparathyroidism. Endocrinology and Metabolism Clinics of North America 47 865888. (https://doi.org/10.1016/j.ecl.2018.07.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Erlichman B & & Weinstein LS 2003 The stimulatory G protein alpha-subunit Gs alpha is imprinted in human thyroid glands: implications for thyroid function in pseudohypoparathyroidism types 1A and 1B. Journal of Clinical Endocrinology and Metabolism 88 43364341. (https://doi.org/10.1210/jc.2003-030393)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Litman D, Rosenberg MJ, Yu S, Biesecker LG & & Weinstein LS 2000a A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. Journal of Clinical Investigation 106 11671174. (https://doi.org/10.1172/JCI10431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Yu S, Litman D, Chen W & & Weinstein LS 2000b Identification of a methylation imprint mark within the mouse Gnas locus. Molecular and Cellular Biology 20 58085817. (https://doi.org/10.1128/MCB.20.16.5808-5817.2000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Nealon JG & & Weinstein LS 2005 Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB. Human Molecular Genetics 14 95102. (https://doi.org/10.1093/hmg/ddi009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mann JB, Alterman S & & Hills AG 1962 Albright's hereditary osteodystrophy comprising pseudohypoparathyroidism and pseudo-pseudohypoparathyroidism. With a report of two cases representing the complete syndrome occurring in successive generations. Annals of Internal Medicine 56 315342. (https://doi.org/10.7326/0003-4819-56-2-315)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mantovani G, Ballare E, Giammona E, Beck-Peccoz P & & Spada A 2002 The gsalpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. Journal of Clinical Endocrinology and Metabolism 87 47364740. (https://doi.org/10.1210/jc.2002-020183)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mantovani G, Maghnie M, Weber G, De Menis E, Brunelli V, Cappa M, Loli P, Beck-Peccoz P & & Spada A 2003 Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type ia: new evidence for imprinting of the Gs alpha gene. Journal of Clinical Endocrinology and Metabolism 88 40704074. (https://doi.org/10.1210/jc.2002-022028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mantovani G, Bondioni S, Linglart A, Maghnie M, Cisternino M, Corbetta S, Lania AG, Beck-Peccoz P & & Spada A 2007 Genetic analysis and evaluation of resistance to thyrotropin and growth hormone-releasing hormone in pseudohypoparathyroidism type Ib. Journal of Clinical Endocrinology and Metabolism 92 37383742. (https://doi.org/10.1210/jc.2007-0869)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mantovani G, De Sanctis L, Barbieri AM, Elli FM, Bollati V, Vaira V, Labarile P, Bondioni S, Peverelli E, Lania AG, et al.2010 Pseudohypoparathyroidism and GNAS epigenetic defects: clinical evaluation of Albright hereditary osteodystrophy and molecular analysis in 40 patients. Journal of Clinical Endocrinology and Metabolism 95 651658. (https://doi.org/10.1210/jc.2009-0176)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mantovani G, Bastepe M, Monk D, De Sanctis L, Thiele S, Usardi A, Ahmed SF, Bufo R, Choplin T, De Filippo G, et al.2018 Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nature Reviews. Endocrinology 14 476500. (https://doi.org/10.1038/s41574-018-0042-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marcus R, Wilber JF & & Aurbach GD 1971 Parathyroid hormone-sensitive adenyl cyclase from the renal cortex of a patient with pseudohypoparathyroidism. Journal of Clinical Endocrinology and Metabolism 33 537541. (https://doi.org/10.1210/jcem-33-3-537)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mariot V, Maupetit-Mehouas S, Sinding C, Kottler ML & & Linglart A 2008 A maternal epimutation of GNAS leads to Albright osteodystrophy and parathyroid hormone resistance. Journal of Clinical Endocrinology and Metabolism 93 661665. (https://doi.org/10.1210/jc.2007-0927)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maupetit-Mehouas S, Mariot V, Reynes C, Bertrand G, Feillet F, Carel JC, Simon D, Bihan H, Gajdos V, Devouge E, et al.2011 Quantification of the methylation at the GNAS locus identifies subtypes of sporadic pseudohypoparathyroidism type Ib. Journal of Medical Genetics 48 5563. (https://doi.org/10.1136/jmg.2010.081356)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mehta S, Williamson CM, Ball S, Tibbit C, Beechey C, Fray M & & Peters J 2015 Transcription driven somatic DNA methylation within the imprinted Gnas cluster. PLoS One 10 e0117378. (https://doi.org/10.1371/journal.pone.0117378)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendes de Oliveira E, Keogh JM & & Farooqi IS 2021 Obesity-associated GNAS mutations and the melanocortin pathway. New England Journal of Medicine 387 285286. (https://doi.org/10.1056/nejmc2119110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Milioto A, Reyes M, Hanna P, Kiuchi Z, Turan S, Zeve D, Agarwal C, Grigelioniene G, Chen A, Mericq V, et al.2022 Lack of GNAS remethylation during oogenesis may be a cause of sporadic pseudohypoparathyroidism type Ib. Journal of Clinical Endocrinology and Metabolism 107 e1610e1619. (https://doi.org/10.1210/clinem/dgab830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller DE, Hanna P, Galey M, Reyes M, Linglart A, Eichler EE & & Jüppner H 2022 Targeted long-read sequencing identifies a retrotransposon insertion as a cause of altered GNAS exon A/B methylation in a family with autosomal dominant pseudohypoparathyroidism type 1b (PHP1B). Journal of Bone and Mineral Research 37 17111719. (https://doi.org/10.1002/jbmr.4647)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulchandani S, Bhoj EJ, Luo M, Powell-Hamilton N, Jenny K, Gripp KW, Elbracht M, Eggermann T, Turner CL, Temple IK, et al.2016 Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. Genetics in Medicine 18 309315. (https://doi.org/10.1038/gim.2015.103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O'Donnell JK, Sweet RW & & Stadel JM 1991 Expression and characterization of the long and short splice variants of GS alpha in S49 cyc- cells. Molecular Pharmacology 39 702710.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patten JL, Johns DR, Valle D, Eil C, Gruppuso PA, Steele G, Smallwood PM & & Levine MA 1990 Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright's hereditary osteodystrophy. New England Journal of Medicine 322 14121419. (https://doi.org/10.1056/NEJM199005173222002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pereda A, Elli FM, Thiele S, De Sanctis L, Rothenbuhler A, Hanna P, Francou B, Ertl DA, Perez de Nanclares G, Linglart A, et al.2021 Inactivating PTH/PTHrP signaling disorders (iPPSDs): evaluation of the new classification in a multicenter large series of 544 molecularly characterized patients. European Journal of Endocrinology 184 311320. (https://doi.org/10.1530/EJE-20-0625)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pérez de Nanclares GP, Fernández-Rebollo E, Santin I, Garcia-Cuartero B, Gaztambide S, Menendez E, Morales MJ, Pombo M, Bilbao JR, Barros F, et al.2007 Epigenetic defects of GNAS in patients with pseudohypoparathyroidism and mild features of Albright's hereditary osteodystrophy. Journal of Clinical Endocrinology and Metabolism 92 23702373. (https://doi.org/10.1210/jc.2006-2287)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez-Nanclares G, Velayos T, Vela A, Munoz-Torres M & & Castano L 2015 Pseudohypoparathyroidism type Ib associated with novel duplications in the GNAS locus. PLoS One 10 e0117691. (https://doi.org/10.1371/journal.pone.0117691)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peters J, Wroe SF, Wells CA, Miller HJ, Bodle D, Beechey CV, Williamson CM & & Kelsey G 1999 A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2. PNAS 96 38303835. (https://doi.org/10.1073/pnas.96.7.3830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plagge A, Gordon E, Dean W, Boiani R, Cinti S, Peters J & & Kelsey G 2004 The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nature Genetics 36 818826. (https://doi.org/10.1038/ng1397)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plagge A, Isles AR, Gordon E, Humby T, Dean W, Gritsch S, Fischer-Colbrie R, Wilkinson LS & & Kelsey G 2005 Imprinted Nesp55 influences behavioral reactivity to novel environments. Molecular and Cellular Biology 25 30193026. (https://doi.org/10.1128/MCB.25.8.3019-3026.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puzhko S, Goodyer CG, Kerachian MA, Canaff L, Misra M, Jüppner H, Bastepe M & & Hendy GN 2011 Parathyroid hormone signaling via Gαs is selectively inhibited by an NH2-terminally truncated Gαs: implications for pseudohypoparathyroidism. Journal of Bone and Mineral Research 26 24732485. (https://doi.org/10.1002/jbmr.461)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reyes M, Kagami M, Kawashima S, Pallotta J, Schnabel D, Fukami M & & Jüppner H 2021 A novel GNAS duplication associated with loss-of-methylation restricted to exon A/B causes pseudohypoparathyroidism type Ib (PHP1B). Journal of Bone and Mineral Research 36 546552. (https://doi.org/10.1002/jbmr.4209)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richard N, Abeguile G, Coudray N, Mittre H, Gruchy N, Andrieux J, Cathebras P & & Kottler ML 2012 A new deletion ablating NESP55 causes loss of maternal imprint of A/B GNAS and autosomal dominant pseudohypoparathyroidism type Ib. Journal of Clinical Endocrinology and Metabolism 97 E863E867. (https://doi.org/10.1210/jc.2011-2804)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richard N, Molin A, Coudray N, Rault-Guillaume P, Jüppner H & & Kottler ML 2013 Paternal GNAS mutations lead to severe intrauterine growth retardation (IUGR) and provide evidence for a role of XLalphas in fetal development. Journal of Clinical Endocrinology and Metabolism 98 E1549E1556. (https://doi.org/10.1210/jc.2013-1667)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez J, Perera E, Jan De Beur S, Ding C, Dang A, Berkovitz GD & & Levine MA 2011 Madelung-like deformity in pseudohypoparathyroidism type 1b. Journal of Clinical Endocrinology and Metabolism 96 E1507E1511. (https://doi.org/10.1210/jc.2011-1411)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sano S, Iwata H, Matsubara K, Fukami M, Kagami M & & Ogata T 2015 Growth hormone deficiency in monozygotic twins with autosomal dominant pseudohypoparathyroidism type Ib. Endocrine Journal 62 523529. (https://doi.org/10.1507/endocrj.EJ15-0033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharma A, Phillips AJ & & Jüppner H 2015 Hypoplastic metatarsals--beyond cosmesis. New England Journal of Medicine 373 21892190. (https://doi.org/10.1056/NEJMc1508520)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shoemaker AH & & Jüppner H 2017 Nonclassic features of pseudohypoparathyroidism type 1A. Current Opinion in Endocrinology, Diabetes, and Obesity 24 3338. (https://doi.org/10.1097/MED.0000000000000306)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tafaj O, Hann S, Ayturk U, Warman ML & & Jüppner H 2017 Mice maintain predominantly maternal Galphas expression throughout life in brown fat tissue (BAT), but not other tissues. Bone 103 177187. (https://doi.org/10.1016/j.bone.2017.07.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takatani R, Minagawa M, Molinaro A, Reyes M, Kinoshita K, Takatani T, Kazukawa I, Nagatsuma M, Kashimada K, Sato K, et al.2015 Similar frequency of paternal uniparental disomy involving chromosome 20q (patUPD20q) in Japanese and Caucasian patients affected by sporadic pseudohypoparathyroidism type Ib (sporPHP1B). Bone 79 1520. (https://doi.org/10.1016/j.bone.2015.05.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takatani R, Molinaro A, Grigelioniene G, Tafaj O, Watanabe T, Reyes M, Sharma A, Singhal V, Raymond FL, Linglart A, et al.2016 Analysis of multiple families with single individuals affected by pseudohypoparathyroidism type Ib (PHP1B) reveals only one novel maternally inherited GNAS deletion. Journal of Bone and Mineral Research 31 796805. (https://doi.org/10.1002/jbmr.2731)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thiele S, Werner R, Ahrens W, Hoppe U, Marschke C, Staedt P & & Hiort O 2007 A disruptive mutation in exon 3 of the GNAS gene with Albright hereditary osteodystrophy, normocalcemic pseudohypoparathyroidism, and selective long transcript variant Gsalpha-L deficiency. Journal of Clinical Endocrinology and Metabolism 92 17641768. (https://doi.org/10.1210/jc.2006-2122)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thiele S, Mantovani G, Barlier A, Boldrin V, Bordogna P, De Sanctis L, Elli FM, Freson K, Garin I, Grybek V, et al.2016 From Pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the European EuroPHP network. European Journal of Endocrinology 175 P1P17. (https://doi.org/10.1530/EJE-16-0107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turan S, Fernández-Rebollo E, Aydin C, Zoto T, Reyes M, Bounoutas G, Chen M, Weinstein LS, Erben RG, Marshansky V, et al.2014 Postnatal establishment of allelic Gαs silencing as a plausible explanation for delayed onset of parathyroid hormone resistance owing to heterozygous galphas disruption. Journal of Bone and Mineral Research 29 749760. (https://doi.org/10.1002/jbmr.2070)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Unluturk U, Harmanci A, Babaoglu M, Yasar U, Varli K, Bastepe M & & Bayraktar M 2008 Molecular diagnosis and clinical characterization of pseudohypoparathyroidism type-Ib in a patient with mild Albright's hereditary osteodystrophy-like features, epileptic seizures, and defective renal handling of uric acid. American Journal of the Medical Sciences 336 8490. (https://doi.org/10.1097/MAJ.0b013e31815b218f)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Usardi A, Mamoune A, Nattes E, Carel JC, Rothenbuhler A & & Linglart A 2017 Progressive development of PTH resistance in patients with inactivating mutations on the maternal allele of GNAS. Journal of Clinical Endocrinology and Metabolism 102 18441850. (https://doi.org/10.1210/jc.2016-3544)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vlaeminck-Guillem V, D'herbomez M, Pigny P, Fayard A, Bauters C, Decoulx M & & Wemeau JL 2001 Pseudohypoparathyroidism Ia and hypercalcitoninemia. Journal of Clinical Endocrinology and Metabolism 86 30913096. (https://doi.org/10.1210/jcem.86.7.7690)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weinstein LS, Gejman PV, Friedman E, Kadowaki T, Collins RM, Gershon ES & & Spiegel AM 1990 Mutations of the Gs α−subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis. PNAS 87 82878290. (https://doi.org/10.1073/pnas.87.21.8287)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weinstein LS, Yu S & & Ecelbarger CA 2000 Variable imprinting of the heterotrimeric G protein G(s) alpha-subunit within different segments of the nephron. American Journal of Physiology 278 F507F514. (https://doi.org/10.1152/ajprenal.2000.278.4.F507)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weinstein LS, Yu S, Warner DR & & Liu J 2001 Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocrine Reviews 22 675705. (https://doi.org/10.1210/edrv.22.5.0439)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weinstein LS, Liu J, Sakamoto A, Xie T & & Chen M 2004 Minireview: GNAS: normal and abnormal functions. Endocrinology 145 54595464. (https://doi.org/10.1210/en.2004-0865)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weinstein LS, Xie T, Qasem A, Wang J & & Chen M 2010 The role of GNAS and other imprinted genes in the development of obesity. International Journal of Obesity 34 617. (https://doi.org/10.1038/ijo.2009.222)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williamson CM, Ball ST, Nottingham WT, Skinner JA, Plagge A, Turner MD, Powles N, Hough T, Papworth D, Fraser WD, et al.2004 A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nature Genetics 36 894899. (https://doi.org/10.1038/ng1398)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yagi M, Kabata M, Ukai T, Ohta S, Tanaka A, Shimada Y, Sugimoto M, Araki K, Okita K, Woltjen K, et al.2019 De novo DNA methylation at imprinted loci during reprogramming into naive and primed pluripotency. Stem Cell Reports 12 11131128. (https://doi.org/10.1016/j.stemcr.2019.04.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y, Chu X, Nie M, Song A, Jiang Y, Li M, Xia W, Xing X & & Wang O 2020 A novel long-range deletion spanning STX16 and NPEPL1 causing imprinting defects of the GNAS locus discovered in a patient with autosomal-dominant pseudohypoparathyroidism type 1B. Endocrine 69 212219. (https://doi.org/10.1007/s12020-020-02304-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang H, Bai D, Li Y, Yu Z, Wang C, Sheng Y, Liu W, Gao S & & Zhang Y 2022 Allele-specific H3K9me3 and DNA methylation co-marked CpG-rich regions serve as potential imprinting control regions in pre-implantation embryo. Nature Cell Biology 24 783792. (https://doi.org/10.1038/s41556-022-00900-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu S, Yu D, Lee E, Eckhaus M, Lee R, Corria Z, Accili D, Westphal H & & Weinstein LS 1998 Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene. PNAS 95 87158720. (https://doi.org/10.1073/pnas.95.15.8715)

    • PubMed
    • Search Google Scholar
    • Export Citation