Retinoic acid regulation of homoeostatic synaptic plasticity and its relationship to cognitive disorders

in Journal of Molecular Endocrinology
Authors:
Francesca Moramarco Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK

Search for other papers by Francesca Moramarco in
Current site
Google Scholar
PubMed
Close
and
Peter McCaffery Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK

Search for other papers by Peter McCaffery in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5956-3997

Correspondence should be addressed to P McCaffery: peter.mccaffery@abdn.ac.uk

This paper forms part of a special collection marking 35 Years Since the Discovery of the Retinoic Acid Receptor. The guest editors for this section were Simak Ali and Vincent Giguère.

Restricted access
Rent on DeepDyve

Sign up for journal news

There is increasing interest in retinoic acid (RA) as a regulator of the complex biological processes underlying the cognitive functions performed by the brain. The importance of RA in brain function is underlined by the brain’s high efficiency in converting vitamin A into RA. One crucial action of RA in the brain is dependent on RA receptor α (RARα) transport out of the nucleus, where it no longer regulates transcription but carries out non-genomic functions. RARα, when localised in the cytoplasm, particularly in neuronal dendrites, acts as a translational suppressor. It regulates protein translation as a crucial part of the mechanism maintaining homoeostatic synaptic plasticity, which is characterised by neuronal changes necessary to restore and balance the excitability of neuronal networks after perturbation events. Under normal conditions of neurotransmission, RARα without ligand suppresses the translation of proteins. When neural activity is reduced, RA synthesis is stimulated, and RA signalling via RARα derepresses the translation of proteins and synergistically with the fragile X mental retardation protein allows the synthesis of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors that re-establish normal levels of synaptic activity. Homoeostatic synaptic plasticity underlies many cognitive processes, so its impairment due to dysregulation of RA signalling may be involved in neurodevelopmental disorders such as autism, which is also associated with FMRP. A full understanding of RA signalling control of homoeostatic synaptic plasticity may point to treatments.

 

  • Collapse
  • Expand
  • Abrahams BS & & Geschwind DH 2008 Advances in autism genetics: on the threshold of a new neurobiology. Nature Reviews. Genetics 9 341355. (https://doi.org/10.1038/NRG2346)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • American Psychiatric Association 2013 Diagnostic and Statistical Manual of Mental Disorders, 5th ed. American Psychiatric Publishing, Inc. (https://doi.org/10.1176/APPI.BOOKS.9780890425596)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anadolu MN, Sun J, Kailasam S, Chalkiadaki K, Krimbacher K, Li JT, Markova T, Jafarnejad SM, Lefebvre F, Ortega J, et al.2023 Ribosomes in RNA granules are stalled on mRNA sequences that are consensus sites for FMRP association. Journal of Neuroscience 43 24402459. (https://doi.org/10.1523/JNEUROSCI.1002-22.2023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aoto J, Nam CI, Poon MM, Ting P & & Chen L 2008 Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60 308320. (https://doi.org/10.1016/J.NEURON.2008.08.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arendt KL, Zhang Z, Ganesan S, Hintze M, Shin MM, Tang Y, Cho A, Graef IA & & Chen L 2015 Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis. PNAS 112 E5744E5752. (https://doi.org/10.1073/pnas.1510239112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baraskewich J, von Ranson KM, McCrimmon A & & McMorris CA 2021 Feeding and eating problems in children and adolescents with autism: a scoping review. Autism 25 15051519. (https://doi.org/10.1177/1362361321995631)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bear MF, Huber KM & & Warren ST 2004 The mGluR theory of fragile X mental retardation. Trends in Neurosciences 27 370377. (https://doi.org/10.1016/J.TINS.2004.04.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bird CM & & Burgess N 2008 The hippocampus and memory: insights from spatial processing. Nature Reviews. Neuroscience 9 182194. (https://doi.org/10.1038/NRN2335)

  • Bleier J & & Toliver A 2017 Exploring the role of CaMKIV in homeostatic plasticity. Journal of Neuroscience 37 1152011522. (https://doi.org/10.1523/JNEUROSCI.2599-17.2017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bredt DS & & Nicoll RA 2003 AMPA receptor trafficking at excitatory synapses. Neuron 40 361379. (https://doi.org/10.1016/S0896-6273(0300640-8)

  • Brown TH & & Chattarji S 1994 Hebbian Synaptic Plasticity: Evolution of the Contemporary Concept, pp. 287314. New York, NY, USA: Springer. (https://doi.org/10.1007/978-1-4612-4320-5_8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen E & & Joseph S 2015 Fragile X mental retardation protein: a paradigm for translational control by RNA-binding proteins. Biochimie 114 147154. (https://doi.org/10.1016/J.BIOCHI.2015.02.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chiang MY, Misner D, Kempermann G, Schikorski T, Giguère V, Sucov HM, Gage FH, Stevens CF & & Evans RM 1998 An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 21 13531361. (https://doi.org/10.1016/S0896-6273(0080654-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cocco S, Diaz G, Stancampiano R, Diana A, Carta M, Curreli R, Sarais L & & Fadd F 2002 Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 115 475482. (https://doi.org/10.1016/S0306-4522(0200423-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coffee RL, Williamson AJ, Adkins CM, Gray MC, Page TL & & Broadie K 2012 In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation. Human Molecular Genetics 21 900915. (https://doi.org/10.1093/HMG/DDR527)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Desai NS 2003 Homeostatic plasticity in the CNS: synaptic and intrinsic forms. Journal of Physiology, Paris 97 391402. (https://doi.org/10.1016/J.JPHYSPARIS.2004.01.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Devys D, Lutz Y, Rouyer N, Bellocq JP & & Mandel JL 1993 The FMR–1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nature Genetics 4 335340. (https://doi.org/10.1038/ng0893-335)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dewett D, Lam-Kamath K, Poupault C, Khurana H & & Rister J 2021 Mechanisms of vitamin A metabolism and deficiency in the mammalian and fly visual system. Developmental Biology 476 6878. (https://doi.org/10.1016/J.YDBIO.2021.03.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dickman DK & & Davis GW 2009 The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326 11271130. (https://doi.org/10.1126/SCIENCE.1179685)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diering GH & & Huganir RL 2018 The AMPA receptor code of synaptic plasticity. Neuron 100 314329. (https://doi.org/10.1016/J.NEURON.2018.10.018)

  • Dollé P 2009 Developmental expression of retinoic acid receptors (RARs). Nuclear Receptor Signaling 7 e006. (https://doi.org/10.1621/NRS.07006)

  • Dumetz F, Ginieis R, Bure C, Marie A, Alfos S, Pallet V & & Bosch-Bouju C 2022 Neuronal morphology and synaptic plasticity in the hippocampus of vitamin A deficient rats. Nutritional Neuroscience 25 779790. (https://doi.org/10.1080/1028415X.2020.1809877)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferrari F, Mercaldo V, Piccoli G, Sala C, Cannata S, Achsel T & & Bagni C 2007 The fragile X mental retardation protein–RNP granules show an mGluR-dependent localization in the post-synaptic spines. Molecular and Cellular Neurosciences 34 343354. (https://doi.org/10.1016/J.MCN.2006.11.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fox K & & Stryker M 2017 Integrating Hebbian and homeostatic plasticity: introduction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 372. (https://doi.org/10.1098/RSTB.2016.0413)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fyke W & & Velinov M 2021 FMR1 and autism, an intriguing connection revisited. Genes 12 1218. (https://doi.org/10.3390/genes12081218)

  • Galanis C & & Vlachos A 2020 Hebbian and homeostatic synaptic plasticity—do alterations of one reflect enhancement of the other? Frontiers in Cellular Neuroscience 14 50. (https://doi.org/10.3389/FNCEL.2020.00050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haskell GT, Maynard TM, Shatzmiller RA & & Lamantia AS 2002 Retinoic acid signaling at sites of plasticity in the mature central nervous system. Journal of Comparative Neurology 452 228241. (https://doi.org/10.1002/CNE.10369)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hinds HL, Ashley CT, Sutcliffe JS, Nelson DL, Warren ST, Housman DE & & Schalling M 1993 Tissue specific expression of FMR–1 provides evidence for a functional role in fragile X syndrome. Nature Genetics 3 3643. (https://doi.org/10.1038/ng0193-36)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houweling AR, Bazhenov M, Timofeev I, Steriade M & & Sejnowski TJ 2005 Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cerebral Cortex 15 834845. (https://doi.org/10.1093/CERCOR/BHH184)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hsu YT, Li J, Wu D, Südhof TC & & Chen L 2019 Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. PNAS 116 71137122. (https://doi.org/10.1073/pnas.1820690116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang Z, Liu Y, Qi G, Brand D & & Zheng SG 2018 Role of vitamin A in the immune system. Journal of Clinical Medicine 7 258. (https://doi.org/10.3390/JCM7090258)

  • Ibata K, Sun Q & & Turrigiano GG 2008 Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron 57 819826. (https://doi.org/10.1016/J.NEURON.2008.02.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Irwin SA, Idupulapati M, Gilbert ME, Harris JB, Chakravarti AB, Rogers EJ, Crisostomo RA, Larsen BP, Mehta A, Alcantara CJ, et al.2002 Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. American Journal of Medical Genetics 111 140146. (https://doi.org/10.1002/ajmg.10500)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Janesick A, Wu SC & & Blumberg B 2015 Retinoic acid signaling and neuronal differentiation. Cellular and Molecular Life Sciences 72 15591576. (https://doi.org/10.1007/S00018-014-1815-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jang SS & & Chung HJ 2016 Emerging link between Alzheimer’s disease and homeostatic synaptic plasticity. Neural Plasticity 2016 7969272. (https://doi.org/10.1155/2016/7969272)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiang W, Yu Q, Gong M, Chen L, Wen EY, Bi Y, Zhang Y, Shi Y, Qu P, Liu YX, Wei XP, Chen J & & Li TY 2012 Vitamin A deficiency impairs postnatal cognitive function via inhibition of neuronal calcium excitability in hippocampus. Journal of Neurochemistry 121 932943. (https://doi.org/10.1111/J.1471-4159.2012.07697.X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kavalali ET & & Monteggia LM 2022 Rapid homeostatic plasticity and neuropsychiatric therapeutics. Neuropsychopharmacology 48 5460. (https://doi.org/10.1038/s41386-022-01411-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kishimoto M, Fujiki R, Takezawa S, Sasaki Y, Nakamura T, Yamaoka K, Kitagawa H & & Kato S 2006 Nuclear receptor mediated gene regulation through chromatin remodeling and histone modifications. Endocrine Journal 53 157172. (https://doi.org/10.1507/ENDOCRJ.53.157)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar S, Reynolds K, Ji Y, Gu R, Rai S & & Zhou CJ 2019 Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. Journal of Neurodevelopmental Disorders 11 10. (https://doi.org/10.1186/S11689-019-9268-Y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lai X, Zhang Q, Zhu J, Yang T, Guo M, Li Q, Liu H, Wu QH, Chen J & & Li TY 2021 A weekly vitamin A supplementary program alleviates social impairment in Chinese children with autism spectrum disorders and vitamin A deficiency. European Journal of Clinical Nutrition 75 11181125. (https://doi.org/10.1038/S41430-020-00827-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langman J & & Welch GW 1966 Effect of vitamin A on development of the central nervous system. Journal of Comparative Neurology 128 116. (https://doi.org/10.1002/CNE.901280102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee HK & & Kirkwood A 2019 Mechanisms of homeostatic synaptic plasticity in vivo. Frontiers in Cellular Neuroscience 13 520. (https://doi.org/10.3389/fncel.2019.00520)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li C, Hu R, Hou N, Wang Y, Wang Z, Yang T, Gu Y, He M, Shi Y, Chen J, et al.2018 Alteration of the retinoid acid-CBP signaling pathway in neural crest induction contributes to enteric nervous system disorder. Frontiers in Pediatrics 6 382. (https://doi.org/10.3389/fped.2018.00382)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu H, Tan M, Cheng B, Wang S, Xiao L, Zhu J, Wu Q, Lai X, Zhang Q, Chen J, et al.2021a Valproic acid induces autism-like synaptic and behavioral deficits by disrupting histone acetylation of prefrontal cortex ALDH1A1 in rats. Frontiers in Neuroscience 15 641284. (https://doi.org/10.3389/FNINS.2021.641284)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Z, Wang J, Xu Q, Hong Q, Zhu J & & Chi X 2021b Research progress in vitamin A and autism spectrum disorder. Behavioural Neurology 2021 5417497. (https://doi.org/10.1155/2021/5417497)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu X, Kumar V, Tsai NP & & Auerbach BD 2021c Hyperexcitability and homeostasis in fragile X syndrome. Frontiers in Molecular Neuroscience 14 805929. (https://doi.org/10.3389/FNMOL.2021.805929)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lohmann C & & Kessels HW 2014 The developmental stages of synaptic plasticity. Journal of Physiology 592 1331. (https://doi.org/10.1113/JPHYSIOL.2012.235119)

  • Luo T, Wagner E, Grün F & & Dräger UC 2004 Retinoic acid signaling in the brain marks formation of optic projections, maturation of the dorsal telencephalon, and function of limbic sites. Journal of Comparative Neurology 470 297316. (https://doi.org/10.1002/CNE.20013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • MacDonald PN, Bok D & & Ong DE 1990 Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human. PNAS 87 42654269. (https://doi.org/10.1073/PNAS.87.11.4265)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maden M, Gale E & & Zile M 1998 The role of vitamin A in the development of the central nervous system. Journal of Nutrition 128(Supplement) 471S475S. (https://doi.org/10.1093/jn/128.2.471S)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maghsoodi B, Poon MM, Nam CI, Aoto J, Ting P & & Chen L 2008 Retinoic acid regulates RARalpha-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity. PNAS 105 1601516020. (https://doi.org/10.1073/PNAS.0804801105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCaffery P, Zhang J & & Crandall JE 2006 Retinoic acid signaling and function in the adult hippocampus. Journal of Neurobiology 66 780791. (https://doi.org/10.1002/NEU.20237)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Misner DL, Jacobs S, Shimizu Y, De Urquiza AM, Solomin L, Perlmann T, De Luca LM, Stevens CF & & Evans RM 2001 Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. PNAS 98 1171411719. (https://doi.org/10.1073/PNAS.191369798)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nomoto M, Takeda Y, Uchida S, Mitsuda K, Enomoto H, Saito K, Choi T, Watabe AM, Kobayashi S, Masushige S, et al.2012 Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity. Molecular Brain 5 115. (https://doi.org/10.1186/1756-6606-5-8/FIGURES/5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ormerod AD, Thind CK, Rice SA, Reid IC, Williams JHG & & McCaffery PJA 2012 Influence of isotretinoin on hippocampal-based learning in human subjects. Psychopharmacology 221 667674. (https://doi.org/10.1007/S00213-011-2611-Y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park E, Lau AG, Arendt KL & & Chen L 2021 FMRP interacts with RARα in synaptic retinoic acid signaling and homeostatic synaptic plasticity. International Journal of Molecular Sciences 22 6579. (https://doi.org/10.3390/IJMS22126579)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perissi V, Jepsen K, Glass CK & & Rosenfeld MG 2010 Deconstructing repression: evolving models of co-repressor action. Nature Reviews. Genetics 11 109123. (https://doi.org/10.1038/nrg2736)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poon MM & & Chen L 2008 Retinoic acid-gated sequence-specific translational control by RARα. PNAS 105 2030320308. (https://doi.org/10.1073/pnas.0807740105)

  • Purkey AM & & Dell’Acqua ML 2020 Phosphorylation-dependent regulation of Ca2+-permeable AMPA receptors during hippocampal synaptic plasticity. Frontiers in Synaptic Neuroscience 12 8. (https://doi.org/10.3389/FNSYN.2020.00008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rocher AB, Gubellini P, Merienne N, Boussicault L, Petit F, Gipchtein P, Jan C, Hantraye P, Brouillet E & & Bonvento G 2016 Synaptic scaling up in medium spiny neurons of aged BACHD mice: a slow-progression model of Huntington’s disease. Neurobiology of Disease 86 131139. (https://doi.org/10.1016/J.NBD.2015.10.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santoro MR, Bray SM & & Warren ST 2012 Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annual Review of Pathology 7 219245. (https://doi.org/10.1146/ANNUREV-PATHOL-011811-132457)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schleif MC, Havel SL & & Griswold MD 2022 Function of retinoic acid in development of male and female gametes. Nutrients 14. (https://doi.org/10.3390/NU14061293)

  • Soden ME & & Chen L 2010 Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. Journal of Neuroscience 30 1691016921. (https://doi.org/10.1523/JNEUROSCI.3660-10.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sutton MA & & Schuman EM 2006 Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127 4958. (https://doi.org/10.1016/J.CELL.2006.09.014)

  • Taylor HBC & & Jeans AF 2021 Friend or foe? The varied faces of homeostatic synaptic plasticity in neurodegenerative disease. Frontiers in Cellular Neuroscience 15 782768. (https://doi.org/10.3389/FNCEL.2021.782768)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tien NW & & Kerschensteiner D 2018 Homeostatic plasticity in neural development. Neural Development 13 9. (https://doi.org/10.1186/S13064-018-0105-X)

  • Turrigiano GG 2008 The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135 422435. (https://doi.org/10.1016/J.CELL.2008.10.008)

  • Turrigiano G 2012 Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspectives in Biology 4 a005736. (https://doi.org/10.1101/CSHPERSPECT.A005736)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turrigiano GG & & Nelson SB 2004 Homeostatic plasticity in the developing nervous system. Nature Reviews. Neuroscience 5 97107. (https://doi.org/10.1038/nrn1327)

  • Walters BJ & & Josselyn SA 2019 Retinoic acid receptor plays both sides of homeostatic plasticity. PNAS 116 65286530. (https://doi.org/10.1073/pnas.1902400116)

  • Wang N, Zhao Y & & Gao J 2021 Association between peripheral blood levels of vitamin A and autism spectrum disorder in children: a meta-analysis. Frontiers in Psychiatry 12 1685. (https://doi.org/10.3389/FPSYT.2021.742937/BIBTEX)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Werner EA & & Deluca HF 2002 Retinoic acid is detected at relatively high levels in the CNS of adult rats. American Journal of Physiology-Endocrinology and Metabolism 282 E672E678. (https://doi.org/10.1152/ajpendo.00280.2001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White JA, Ramshaw H, Taimi M, Stangle W, Zhang A, Everingham S, Creighton S, Tam SP, Jones G & & Petkovich M 2000 Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism. PNAS 97 64036408. (https://doi.org/10.1073/pnas.120161397)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wołoszynowska-Fraser MU, Kouchmeshky A & & McCaffery P 2020 Vitamin A and retinoic acid in cognition and cognitive disease. Annual Review of Nutrition 40 247272. (https://doi.org/10.1146/ANNUREV-NUTR-122319-034227)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wondolowski J & & Dickman D 2013 Emerging links between homeostatic synaptic plasticity and neurological disease. Frontiers in Cellular Neuroscience 7 223. (https://doi.org/10.3389/FNCEL.2013.00223/BIBTEX)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu X, Li C, Gao X, Xia K, Guo H, Li Y, Hao Z, Zhang L, Gao D, Xu C, et al.2018 Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Research 28 4868. (https://doi.org/10.1038/CR.2017.132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang J & & Prescott SA 2023 Homeostatic regulation of neuronal function: importance of degeneracy and pleiotropy. Frontiers in Cellular Neuroscience 17 1184563. (https://doi.org/10.3389/FNCEL.2023.1184563)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang T, Chen L, Dai Y, Jia F, Hao Y, Li L, Zhang J, Wu L, Ke X, Yi M, et al.2022a Vitamin A status is more commonly associated with symptoms and neurodevelopment in boys with autism spectrum disorders—A multicenter study in China. Frontiers in Nutrition 9 851980. (https://doi.org/10.3389/FNUT.2022.851980)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang L, Xia Z, Feng J, Zhang M, Miao P, Nie Y, Zhang X, Hao Z & & Hu R 2022b Retinoic acid supplementation rescues the social deficits in Fmr1 knockout mice. Frontiers in Genetics 13 928393. (https://doi.org/10.3389/FGENE.2022.928393)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zetterström RH, Lindqvist E, Mata de Urquiza A, Tomac A, Eriksson U, Perlmann T & & Olson L 1999 Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. European Journal of Neuroscience 11 407416. (https://doi.org/10.1046/J.1460-9568.1999.00444.X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Z, Marro SG, Zhang Y, Arendt KL, Patzke C, Zhou B, Fair T, Yang N, Südhof TC, Wernig M, et al.2018 The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine 10. (https://doi.org/10.1126/scitranslmed.aar4338)

    • PubMed
    • Search Google Scholar
    • Export Citation