A time- and space-resolved nuclear receptor atlas in mouse liver

in Journal of Molecular Endocrinology
Authors:
Francesco Paolo ZummoUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Francesco Paolo Zummo in
Current site
Google Scholar
PubMed
Close
,
Alexandre BerthierUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Alexandre Berthier in
Current site
Google Scholar
PubMed
Close
,
Céline GheeraertUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Céline Gheeraert in
Current site
Google Scholar
PubMed
Close
,
Manjula VinodUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Manjula Vinod in
Current site
Google Scholar
PubMed
Close
,
Marie Bobowski-GérardUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Marie Bobowski-Gérard in
Current site
Google Scholar
PubMed
Close
,
Olivier Molendi-CosteUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France

Search for other papers by Olivier Molendi-Coste in
Current site
Google Scholar
PubMed
Close
,
Laurent PineauUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Laurent Pineau in
Current site
Google Scholar
PubMed
Close
,
Matthieu JungUniversity of Strasbourg, CNRS UMR 7104, INSERM U1258 - GenomEast Platform - IGBMC - Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France

Search for other papers by Matthieu Jung in
Current site
Google Scholar
PubMed
Close
,
Loic GuilleUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Loic Guille in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8387-1092
,
Julie Dubois-ChevalierUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Julie Dubois-Chevalier in
Current site
Google Scholar
PubMed
Close
,
David DombrowiczUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by David Dombrowicz in
Current site
Google Scholar
PubMed
Close
,
Bart StaelsUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Bart Staels in
Current site
Google Scholar
PubMed
Close
,
Jérôme EeckhouteUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Jérôme Eeckhoute in
Current site
Google Scholar
PubMed
Close
, and
Philippe LefebvreUniversity of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France

Search for other papers by Philippe Lefebvre in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9366-5129
View More View Less

Correspondence should be addressed to P Lefebvre: philippe-claude.lefebvre@inserm.fr
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

The functional versatility of the liver is paramount for organismal homeostasis. Adult liver functions are controlled by a tightly regulated transcription factor network including nuclear receptors (NRs), which orchestrate many aspects of hepatic physiology. NRs are transcription factors sensitive to extracellular cues such as hormones, lipids, xenobiotics, etc. and are modulated by intracellular signaling pathways. While liver functional zonation and adaptability to fluctuating conditions rely on a sophisticated cellular architecture, a comprehensive knowledge of NR functions within liver cell populations is still lacking. As a step toward the accurate mapping of NR functions in the liver, we characterized their levels of expression in the whole liver from C57Bl6/J male mice as a function of time and diet. Nr1d1 (Rev-erba), Nr1d2 (Rev-erbb), Nr1c2 (Pparb/d), and Nr1f3 (Rorg) exhibited a robust cyclical expression in ad libitum-fed mice which was, like most cyclically expressed NRs, reinforced upon time-restricted feeding. In a few instances, cyclical expression was lost or gained as a function of the feeding regimen. NR isoform expression was explored in purified hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells, and liver sinusoidal cells. The expression of some NR isoforms, such as Nr1h4 (Fxra) and Nr1b1 (Rara) isoforms, was markedly restricted to a few cell types. Leveraging liver single-cell RNAseq studies yielded a zonation pattern of NRs in hepatocytes, liver sinusoidal cells, and stellate cells, establishing a link between NR subtissular localization and liver functional specialization. In summary, we provide here an up-to-date compendium of NR expression in mouse liver in space and time.

 

  • Collapse
  • Expand
  • Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Grüning BA, et al.2018 The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research 46 W537–W544. (https://doi.org/10.1093/nar/gky379)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aizarani N, Saviano A, Sagar ML, Durand S, Herman JS, Pessaux P, Baumert TF & & Grun D 2019 A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572 199204. (https://doi.org/10.1038/s41586-019-1373-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anders S & & Huber W 2010 Differential expression analysis for sequence count data. Genome Biology 11 R106. (https://doi.org/10.1186/gb-2010-11-10-r106)

  • Anders S, Pyl PT & & Huber W 2015 HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31 166169. (https://doi.org/10.1093/bioinformatics/btu638)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Annalora AJ, Marcus CB & & Iversen PL 2020 Alternative splicing in the nuclear receptor superfamily expands gene function to refine endo-xenobiotic metabolism. Drug Metabolism and Disposition 48 272287. (https://doi.org/10.1124/dmd.119.089102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benjamini Y & & Hochberg Y 1995 Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57 289300. (https://doi.org/10.1111/j.2517-6161.1995.tb02031.x)

    • Search Google Scholar
    • Export Citation
  • Ben-Moshe S & & Itzkovitz S 2019 Spatial heterogeneity in the mammalian liver. Nature Reviews. Gastroenterology and Hepatology 16 395410. (https://doi.org/10.1038/s41575-019-0134-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ben-Moshe S, Shapira Y, Moor AE, Manco R, Veg T, Bahar Halpern K & & Itzkovitz S 2019 Spatial sorting enables comprehensive characterization of liver zonation. Nature Metabolism 1 899911. (https://doi.org/10.1038/s42255-019-0109-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berrabah W, Aumercier P, Lefebvre P & & Staels B 2011 Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Letters 585 16401650. (https://doi.org/10.1016/j.febslet.2011.03.066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berthier A, Johanns M, Zummo FP, Lefebvre P & & Staels B 2021 PPARs in liver physiology. Biochimica et Biophysica Acta. Molecular Basis of Disease 1867 166097. (https://doi.org/10.1016/j.bbadis.2021.166097)

    • Search Google Scholar
    • Export Citation
  • Boesjes M, Bloks VW, Hageman J, Bos T, Van Dijk TH, Havinga R, Wolters H, Jonker JW, Kuipers F & & Groen AK 2014 Hepatic farnesoid X-receptor isoforms alpha2 and alpha4 differentially modulate bile salt and lipoprotein metabolism in mice. PLoS One 9 e115028. (https://doi.org/10.1371/journal.pone.0115028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM & & Mangelsdorf DJ 2006 Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126 789799. (https://doi.org/10.1016/j.cell.2006.06.049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chaix A, Deota S, Bhardwaj R, Lin T & & Panda S 2021 Sex- and age-dependent outcomes of 9-hour time-restricted feeding of a Western high-fat high-sucrose diet in C57BL/6J mice. Cell Reports 36 109543. (https://doi.org/10.1016/j.celrep.2021.109543)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chaix A, Lin T, Le HD, Chang MW & & Panda S 2019 Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metabolism 29 303319.e4. (https://doi.org/10.1016/j.cmet.2018.08.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Correia JC, Massart J, De Boer JF, Porsmyr-Palmertz M, Martinez-Redondo V, Agudelo LZ, Sinha I, Meierhofer D, Ribeiro V, Bjornholm M, et al.2015 Bioenergetic cues shift FXR splicing towards FXRalpha2 to modulate hepatic lipolysis and fatty acid metabolism. Molecular Metabolism 4 891902. (https://doi.org/10.1016/j.molmet.2015.09.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Della Torre S & & Maggi A 2017 Sex differences: A resultant of an evolutionary pressure? Cell Metabolism 25 499505. (https://doi.org/10.1016/j.cmet.2017.01.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deota S, Lin T, Chaix A, Williams A, Le H, Calligaro H, Ramasamy R, Huang L & & Panda S 2023 Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals. Cell Metabolism 35 150–165.e4. (https://doi.org/10.1016/j.cmet.2022.12.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP, Portman JR, Wallenborg K, Picelli S, Zagorska A, Pendem SV, et al.2019 Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Reports 29 18321847.e8. (https://doi.org/10.1016/j.celrep.2019.10.024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & & Gingeras TR 2013 STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 1521. (https://doi.org/10.1093/bioinformatics/bts635)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Droin C, Kholtei JE, Bahar Halpern K, Hurni C, Rozenberg M, Muvkadi S, Itzkovitz S & & Naef F 2021 Space-time logic of liver gene expression at sub-lobular scale. Nature Metabolism 3 4358. (https://doi.org/10.1038/s42255-020-00323-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eckel-Mahan KL, Patel VR, De Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P & & Sassone-Corsi P 2013 Reprogramming of the circadian clock by nutritional challenge. Cell 155 14641478. (https://doi.org/10.1016/j.cell.2013.11.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fickert P, Fuchsbichler A, Moustafa T, Wagner M, Zollner G, Halilbasic E, Stoger U, Arrese M, Pizarro M, Solis N, et al.2009 Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. American Journal of Pathology 175 23922405. (https://doi.org/10.2353/ajpath.2009.090114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frevert U, Engelmann S, Zougbede S, Stange J, Ng B, Matuschewski K, Liebes L & & Yee H 2005 Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLOS Biology 3 e192. (https://doi.org/10.1371/journal.pbio.0030192)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garrido A, Kim E, Teijeiro A, Sanchez PS, Gallo R, Nair A, Matamala Montoya M, Perna C, Vicent GP, Munoz J, et al.2022 Histone acetylation of bile acid transporter genes plays a critical role in cirrhosis. Journal of Hepatology 76 850861. (https://doi.org/10.1016/j.jhep.2021.12.019)

    • Search Google Scholar
    • Export Citation
  • Gonzalez-Sanchez E, Firrincieli D, Housset C & & Chignard N 2017 Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863 16991708. (https://doi.org/10.1016/j.bbadis.2017.04.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guille L, Johanns M, Zummo F-P, Staels B, Lefebvre P, Eeckhoute J & & Dubois-Chevalier J 2022 ISCEBERG: interactive single cell expression browser for exploration of RNAseq data using graphics (v1.0.1). Zenodo 6563734. (https://doi.org/10.5281/zenodo.6563734)

    • Search Google Scholar
    • Export Citation
  • Halpern KB, Shenhav R, Massalha H, Toth B, Egozi A, Massasa EE, Medgalia C, David E, Giladi A, Moor AE, et al.2018 Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nature Biotechnology 36 962970. (https://doi.org/10.1038/nbt.4231)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor AE, et al.2017 Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542 352356. (https://doi.org/10.1038/nature21065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatori M, Vollmers C, Zarrinpar A, Ditacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, et al.2012 Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metabolism 15 848860. (https://doi.org/10.1016/j.cmet.2012.04.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu Y, Zhan Q, Liu HX, Chau T, Li Y & & Wan YJ 2014 Accelerated partial hepatectomy-induced liver cell proliferation is associated with liver injury in Nur77 knockout mice. American Journal of Pathology 184 32723283. (https://doi.org/10.1016/j.ajpath.2014.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hughes ME, Hogenesch JB & & Kornacker K 2010 JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. Journal of Biological Rhythms 25 372380. (https://doi.org/10.1177/0748730410379711)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katz Y, Wang ET, Silterra J, Schwartz S, Wong B, Thorvaldsdottir H, Robinson JT, Mesirov JP, Airoldi EM & & Burge CB 2015 Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics 31 24002402. (https://doi.org/10.1093/bioinformatics/btv034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kechin A, Boyarskikh U, Kel A & & Filipenko M 2017 cutPrimers: A new tool for accurate cutting of primers from reads of targeted next generation sequencing. Journal of Computational Biology 24 11381143. (https://doi.org/10.1089/cmb.2017.0096)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kietzmann T 2017 Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biology 11 622630. (https://doi.org/10.1016/j.redox.2017.01.012)

  • Lefebvre B, Benomar Y, Guedin A, Langlois A, Hennuyer N, Dumont J, Bouchaert E, Dacquet C, Penicaud L, Casteilla L, et al.2010 Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPARgamma in obese mice and humans. Journal of Clinical Investigation 120 14541468. (https://doi.org/10.1172/JCI38606)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Z, Kruijt JK, Van Der Sluis RJ, Van Berkel TJ & & Hoekstra M 2013 Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiological Genomics 45 268275. (https://doi.org/10.1152/physiolgenomics.00151.2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Love MI, Huber W & & Anders S 2014 Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15 550. (https://doi.org/10.1186/s13059-014-0550-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu YF, Jin T, Xu Y, Zhang D, Wu Q, Zhang YK & & Liu J 2013 Sex differences in the circadian variation of cytochrome P450 genes and corresponding nuclear receptors in mouse liver. Chronobiology International 30 11351143. (https://doi.org/10.3109/07420528.2013.805762)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mederacke I, Dapito DH, Affo S, Uchinami H & & Schwabe RF 2015 High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nature Protocols 10 305315. (https://doi.org/10.1038/nprot.2015.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukha A, Kalkhoven E & & Van Mil SWC 2021 Splice variants of metabolic nuclear receptors: relevance for metabolic disease and therapeutic targeting. Biochimica et Biophysica Acta. Molecular Basis of Disease 1867 166183. (https://doi.org/10.1016/j.bbadis.2021.166183)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagy P, Thorgeirsson SS & & Grisham JW 2020 Organizational principles of the liver. The Liver: Biology and Pathobiology, 6th edn, ch1, pp3–33. Hoboken, NJ, USA: Wiley.

    • Search Google Scholar
    • Export Citation
  • Natale DA, Arighi CN, Blake JA, Bona J, Chen C, Chen SC, Christie KR, Cowart J, D'eustachio P, Diehl AD, et al.2017 Protein Ontology (PRO): enhancing and scaling up the representation of protein entities. Nucleic Acids Research 45 D339D346. (https://doi.org/10.1093/nar/gkw1075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishimura M, Naito S & & Yokoi T 2004 Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metabolism and Pharmacokinetics 19 135149. (https://doi.org/10.2133/dmpk.19.135)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Panday R, Monckton CP & & Khetani SR 2022 The role of liver zonation in physiology, regeneration, and disease. Seminars in Liver Disease 42 116. (https://doi.org/10.1055/s-0041-1742279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Payen VL, Lavergne A, Alevra Sarika N, Colonval M, Karim L, Deckers M, Najimi M, Coppieters W, Charloteaux B, Sokal EM, et al.2021 Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Reports 3 100278. (https://doi.org/10.1016/j.jhepr.2021.100278)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pei L, Waki H, Vaitheesvaran B, Wilpitz DC, Kurland IJ & & Tontonoz P 2006 NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nature Medicine 12 10481055. (https://doi.org/10.1038/nm1471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pols TW, Ottenhoff R, Vos M, Levels JH, Quax PH, Meijers JC, Pannekoek H, Groen AK & & De Vries CJ 2008 Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity. Biochemical and Biophysical Research Communications 366 910916. (https://doi.org/10.1016/j.bbrc.2007.12.039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Praestholm SM, Correia CM & & Grontved L 2020 Multifaceted control of GR signaling and its impact on hepatic transcriptional networks and metabolism. Frontiers in Endocrinology (Lausanne) 11 572981. (https://doi.org/10.3389/fendo.2020.572981)

    • Search Google Scholar
    • Export Citation
  • Ramos Pittol JM, Milona A, Morris I, Willemsen ECL, Van Der Veen SW, Kalkhoven E & & Van Mil SWC 2020 FXR isoforms control different metabolic functions in liver cells via binding to specific DNA motifs. Gastroenterology 159 18531865.e10. (https://doi.org/10.1053/j.gastro.2020.07.036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W & & Smyth GK 2015 limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43 e47. (https://doi.org/10.1093/nar/gkv007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G & & Mesirov JP 2011 Integrative genomics viewer. Nature Biotechnology 29 2426. (https://doi.org/10.1038/nbt.1754)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmittgen TD & & Livak KJ 2008 Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3 11011108. (https://doi.org/10.1038/nprot.2008.73)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soccio RE 2020 Hepati c nuclear receptors. The Liver: Biology and Pathobiology, 6th edn, ch28, pp337–350. Hoboken, NJ, USA: Wiley.

  • Su T, Yang Y, Lai S, Jeong J, Jung Y, Mcconnell M, Utsumi T & & Iwakiri Y 2021 Single-cell transcriptomics reveals zone-specific alterations of liver sinusoidal endothelial cells in cirrhosis. Cellular and Molecular Gastroenterology and Hepatology 11 11391161. (https://doi.org/10.1016/j.jcmgh.2020.12.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • UniProt Consortium 2021 UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research 49 D480D489. (https://doi.org/10.1093/nar/gkaa1100)

  • Vandel J, Gheeraert C, Staels B, Eeckhoute J, Lefebvre P & & Dubois-Chevalier J 2020 GIANT: galaxy-based tool for interactive analysis of transcriptomic data. Scientific Reports 10 19835. (https://doi.org/10.1038/s41598-020-76769-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vaquero J, Monte MJ, Dominguez M, Muntane J & & Marin JJ 2013 Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochemical Pharmacology 86 926939. (https://doi.org/10.1016/j.bcp.2013.07.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S, Elst IV, Windmolders P, Vanuytsel T, Nevens F, et al.2014 Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 59 22862298. (https://doi.org/10.1002/hep.26939)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vollmers C, Gill S, Ditacchio L, Pulivarthy SR, Le HD & & Panda S 2009 Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. PNAS 106 2145321458. (https://doi.org/10.1073/pnas.0909591106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weikum ER, Liu X & & Ortlund EA 2018 The nuclear receptor superfamily: A structural perspective. Protein Science 27 18761892. (https://doi.org/10.1002/pro.3496)

    • PubMed
    • Search Google Scholar
    • Export Citation