BMAL1 regulates osteoblast differentiation through mTOR/GSK3β/β-catenin pathway

in Journal of Molecular Endocrinology
Authors:
Huixia LiDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China

Search for other papers by Huixia Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5080-1912
,
Hui MengDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China

Search for other papers by Hui Meng in
Current site
Google Scholar
PubMed
Close
,
Min XuDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China

Search for other papers by Min Xu in
Current site
Google Scholar
PubMed
Close
,
Xin GaoDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China

Search for other papers by Xin Gao in
Current site
Google Scholar
PubMed
Close
,
Xulei SunDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China

Search for other papers by Xulei Sun in
Current site
Google Scholar
PubMed
Close
,
Xinxin JinDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China

Search for other papers by Xinxin Jin in
Current site
Google Scholar
PubMed
Close
, and
Hongzhi SunDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China

Search for other papers by Hongzhi Sun in
Current site
Google Scholar
PubMed
Close
View More View Less

Correspondence should be addressed to H Sun: sunhongzhi@mail.xjtu.edu.cn
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

Bone mass declines with age and its maintenance is tightly linked to osteoblasts (crucial bone-building cells). Although disruption of the peripheral circadian clock is involved in various pathologies including aging-related diseases, evidence regarding how the peripheral clock regulates bone mass remains elusive. In the present study, we aimed to elucidate the effects of Bmal1 (the key activator of the peripheral circadian clock system) knockdown by lentivirus-mediated shRNA on osteoblast differentiation and its related mechanisms. We found that the expression of osteogenic markers, alkaline phosphatase activity, and mineralization were decreased, whereas apoptosis and inflammatory response were increased in Bmal1 knockdown osteoblasts. In addition, Bmal1 knockdown promoted ERK and JNK phosphorylation, as well as mTOR activity, whereas mTOR inhibition by rapamycin abrogated Bmal1 knockdown-mediated effects on osteoblast differentiation and mineralization capacity. Remarkably, Bmal1 knockdown in osteoblasts inhibited GSK3β/β-catenin signaling with decreased β-catenin expression and GSK-3β phosphorylation at serine 9, while GSK3β inhibition with TDZD-8, but not WNT3a or SKL2001, rescued Bmal1 knockdown-induced defects in osteoblast differentiation. Moreover, rapamycin partly nullified the suppression of Bmal1 knockdown on β-catenin expression and GSK-3β phosphorylation. Collectively, overall data indicated that circadian gene Bmal1 regulated osteoblast differentiation and inflammatory response in an mTOR/GSK3β/β-catenin-dependent manner, and thereby may contribute to the mineralization process and bone modeling/remodeling.

 

  • Collapse
  • Expand
  • Abdel-Rafei MK, Thabet NM, Rashed LA & & Moustafa EM 2021 Canagliflozin, a SGLT-2 inhibitor, relieves ER stress, modulates autophagy and induces apoptosis in irradiated HepG2 cells: signal transduction between PI3K/AKT/GSK-3beta/mTOR and Wnt/beta-catenin pathways; in vitro. Journal of Cancer Research and Therapeutics 17 14041418. (https://doi.org/10.4103/jcrt.JCRT_963_19)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beta RAA, Arsenopoulou ZV, Kanoura A, Dalkidis D, Avraamidou R & & Balatsos NAA 2022 Core clock regulators in dexamethasone-treated HEK 293T cells at 4 h intervals. BMC Research Notes 15 23. (https://doi.org/10.1186/s13104-021-05871-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buijs RM & & Kalsbeek A 2001 Hypothalamic integration of central and peripheral clocks. Nature Reviews. Neuroscience 2 521526. (https://doi.org/10.1038/35081582)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bunger MK, Walisser JA, Sullivan R, Manley PA, Moran SM, Kalscheur VL, Colman RJ & & Bradfield CA 2005 Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus. Genesis 41 122132. (https://doi.org/10.1002/gene.20102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao R, Anderson FE, Jung YJ, Dziema H & & Obrietan K 2011 Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience 181 7988. (https://doi.org/10.1016/j.neuroscience.2011.03.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao R, Li A, Cho HY, Lee B & & Obrietan K 2010 Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock. Journal of Neuroscience 30 63026314. (https://doi.org/10.1523/JNEUROSCI.5482-09.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen B, Tan Y, Liang Y, Li Y, Chen L, Wu S, Xu W, Wang Y, Zhao W & & Wu J 2017 Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. Oncology Letters 13 423428. (https://doi.org/10.3892/ol.2016.5430)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen G, Tang Q, Yu S, Xie Y, Sun J, Li S & & Chen L 2020 The biological function of BMAL1 in skeleton development and disorders. Life Sciences 253 117636. (https://doi.org/10.1016/j.lfs.2020.117636)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dai Q, Xie F, Han Y, Ma X, Zhou S, Jiang L, Zou W & & Wang J 2017 Inactivation of regulatory-associated protein of mTOR (raptor)/mammalian target of rapamycin Complex 1 (mTORC1) signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice. Journal of Biological Chemistry 292 196204. (https://doi.org/10.1074/jbc.M116.764761)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farr JN, Weivoda MM, Nicks KM, Fraser DG, Negley BA, Onken JL, Thicke BS, Ruan M, Liu H, Forrest D, et al.2018 Osteoprotection through the deletion of the transcription factor Rorbeta in mice. Journal of Bone and Mineral Research 33 720731. (https://doi.org/10.1002/jbmr.3351)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fingar DC & & Blenis J 2004 Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23 31513171. (https://doi.org/10.1038/sj.onc.1207542)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fu L, Patel MS, Bradley A, Wagner EF & & Karsenty G 2005 The molecular clock mediates leptin-regulated bone formation. Cell 122 803815. (https://doi.org/10.1016/j.cell.2005.06.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, Pariollaud M, et al.2014 An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nature Medicine 20 919926. (https://doi.org/10.1038/nm.3599)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Glantschnig H, Fisher JE, Wesolowski G, Rodan GA & & Reszka AA 2003 M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death and Differentiation 10 11651177. (https://doi.org/10.1038/sj.cdd.4401285)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gwak J, Hwang SG, Park HS, Choi SR, Park SH, Kim H, Ha NC, Bae SJ, Han JK, Kim DE, et al.2012 Small molecule-based disruption of the Axin/beta-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Research 22 237247. (https://doi.org/10.1038/cr.2011.127)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Izumo M, Sato TR, Straume M & & Johnson CH 2006 Quantitative analyses of circadian gene expression in mammalian cell cultures. PLOS Computational Biology 2 e136. (https://doi.org/10.1371/journal.pcbi.0020136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawai M, Kinoshita S, Yamazaki M, Yamamoto K, Rosen CJ, Shimba S, Ozono K & & Michigami T 2019 Intestinal clock system regulates skeletal homeostasis. JCI Insight 4 e121798. (https://doi.org/10.1172/jci.insight.121798)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khapre RV, Kondratova AA, Patel S, Dubrovsky Y, Wrobel M, Antoch MP & & Kondratov RV 2014 BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging 6 4857. (https://doi.org/10.18632/aging.100633)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laplante M & & Sabatini DM 2012 MTOR signaling in growth control and disease. Cell 149 274293. (https://doi.org/10.1016/j.cell.2012.03.017)

  • Li H, Li D, Ma Z, Qian Z, Kang X, Jin X, Li F, Wang X, Chen Q, Sun H, et al.2018 Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy 14 17261741. (https://doi.org/10.1080/15548627.2018.1483807)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu QB, Du Q, Wang HP, Tang ZH, Wang YB & & Sun HJ 2020 Salusin-beta mediates tubular cell apoptosis in acute kidney injury: involvement of the PKC/ROS signaling pathway. Redox Biology 30 101411. (https://doi.org/10.1016/j.redox.2019.101411)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma Z, Jin X, Qian Z, Li F, Xu M, Zhang Y, Kang X, Li H, Gao X, Zhao L, et al.2019 Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1alpha-VEGF signaling pathway. Cell Cycle 18 14731489. (https://doi.org/10.1080/15384101.2019.1620572)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martyniak K, Wei F, Ballesteros A, Meckmongkol T, Calder A, Gilbertson T, Orlovskaya N & & Coathup MJ 2021 Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone 143 115736. (https://doi.org/10.1016/j.bone.2020.115736)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maury E 2019 Off the clock: from circadian disruption to metabolic disease. International Journal of Molecular Sciences 20 1597. (https://doi.org/10.3390/ijms20071597)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mielle J, Morel J, Elhmioui J, Combe B, Macia L, Dardalhon V, Taylor N, Audo R & & Daien C 2021 Glutamine promotes the generation of B10(+) cells via the mTOR/GSK3 pathway. European Journal of Immunology 52 418430. (https://doi.org/10.1002/eji.202149387)

    • Search Google Scholar
    • Export Citation
  • Newton PT, Vuppalapati KK, Bouderlique T & & Chagin AS 2015 Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner. Autophagy 11 15941607. (https://doi.org/10.1080/15548627.2015.1068489)

    • Search Google Scholar
    • Export Citation
  • Qian Z, Zhang Y, Kang X, Li H, Zhang Y, Jin X, Gao X, Xu M, Ma Z, Zhao L, et al.2020 Postnatal conditional deletion of Bmal1 in osteoblasts enhances trabecular bone formation via increased BMP2 signals. Journal of Bone and Mineral Research 35 14811493. (https://doi.org/10.1002/jbmr.4017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Samsa WE, Vasanji A, Midura RJ & & Kondratov RV 2016 Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84 194203. (https://doi.org/10.1016/j.bone.2016.01.006)

    • Search Google Scholar
    • Export Citation
  • Scheiermann C, Gibbs J, Ince L & & Loudon A 2018 Clocking in to immunity. Nature Reviews. Immunology 18 423437. (https://doi.org/10.1038/s41577-018-0008-4)

  • Scheiermann C, Kunisaki Y & & Frenette PS 2013 Circadian control of the immune system. Nature Reviews. Immunology 13 190198. (https://doi.org/10.1038/nri3386)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, Hashimoto D, Merad M & & Frenette PS 2012 Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37 290301. (https://doi.org/10.1016/j.immuni.2012.05.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang D, Yao Z, et al.2018 Mammalian target of rapamycin as a therapeutic target in osteoporosis. Journal of Cellular Physiology 233 39293944. (https://doi.org/10.1002/jcp.26161)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Song C, Wang J, Kim B, Lu C, Zhang Z, Liu H, Kang H, Sun Y, Guan H, Fang Z, et al.2018 Insights into the role of circadian rhythms in bone metabolism: a promising intervention target? BioMed Research International 2018 9156478. (https://doi.org/10.1155/2018/9156478)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takarada T, Kodama A, Hotta S, Mieda M, Shimba S, Hinoi E & & Yoneda Y 2012 Clock genes influence gene expression in growth plate and endochondral ossification in mice. Journal of Biological Chemistry 287 3608136095. (https://doi.org/10.1074/jbc.M112.408963)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takarada T, Xu C, Ochi H, Nakazato R, Yamada D, Nakamura S, Kodama A, Shimba S, Mieda M, Fukasawa K, et al.2017 Bone resorption is regulated by circadian clock in osteoblasts. Journal of Bone and Mineral Research 32 872881. (https://doi.org/10.1002/jbmr.3053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Timmons GA, Carroll RG, O'siorain JR, Cervantes-Silva MP, Fagan LE, Cox SL, Palsson-Mcdermott E, Finlay DK, Vincent EE, Jones N, et al.2021 The circadian clock protein BMAL1 acts as a metabolic sensor in macrophages to control the production of pro IL-1beta. Frontiers in Immunology 12 700431. (https://doi.org/10.3389/fimmu.2021.700431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tsang K, Liu H, Yang Y, Charles JF & & Ermann J 2019 Defective circadian control in mesenchymal cells reduces adult bone mass in mice by promoting osteoclast function. Bone 121 172180. (https://doi.org/10.1016/j.bone.2019.01.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xiao Q, Qian J, Evans DS, Redline S, Lane NE, Ancoli-Israel S, Scheer FAJL & & Stone K 2022 Cross-sectional and prospective associations of rest-activity rhythms with circulating inflammatory markers in older men. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 77 5565. (https://doi.org/10.1093/gerona/glab095)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, Hinoi E, Okawa A & & Takeda S 2016 Circadian clock regulates bone resorption in mice. Journal of Bone and Mineral Research 31 13441355. (https://doi.org/10.1002/jbmr.2803)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xuan Y, Yang Y, Xiang L & & Zhang C 2022 The role of oxidative stress in the pathogenesis of vitiligo: a culprit for melanocyte Death. Oxidative Medicine and Cellular Longevity 2022 8498472. (https://doi.org/10.1155/2022/8498472)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu S, Tang Q, Xie M, Zhou X, Long Y, Xie Y, Guo F & & Chen L 2020 Circadian BMAL1 regulates mandibular condyle development by hedgehog pathway. Cell Proliferation 53 e12727. (https://doi.org/10.1111/cpr.12727)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan G, Hua B, Yang Y, Xu L, Cai T, Sun N, Yan Z, Lu C & & Qian R 2017 The circadian gene clock regulates bone formation via PDIA3. Journal of Bone and Mineral Research 32 861871. (https://doi.org/10.1002/jbmr.3046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao J, Zhou X, Tang Q, Yu R, Yu S, Long Y, Cao C, Han J, Shi A, Mao JJ, et al.2018 BMAL1 deficiency contributes to mandibular dysplasia by upregulating MMP3. Stem Cell Reports 10 180195. (https://doi.org/10.1016/j.stemcr.2017.11.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng X & & Sehgal A 2010 AKT and TOR signaling set the pace of the circadian pacemaker. Current Biology 20 12031208. (https://doi.org/10.1016/j.cub.2010.05.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou X, Yu R, Long Y, Zhao J, Yu S, Tang Q & & Chen L 2018 BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation. Cell Proliferation 51 e12470. (https://doi.org/10.1111/cpr.12470)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou XJ & & Zhang H 2012 Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy 8 12861299. (https://doi.org/10.4161/auto.21212)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhuo H, Wang Y & & Zhao Q 2018 The interaction between Bmal1 and Per2 in mouse BMSC osteogenic differentiation. Stem Cells International 2018 3407821. (https://doi.org/10.1155/2018/3407821)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zoncu R, Efeyan A & & Sabatini DM 2011 mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews. Molecular Cell Biology 12 2135. (https://doi.org/10.1038/nrm3025)

    • PubMed
    • Search Google Scholar
    • Export Citation