Cotadutide effect in liver and adipose tissue in obese mice

in Journal of Molecular Endocrinology
Authors:
Ilitch Aquino Marcondes-de-CastroLaboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Ilitch Aquino Marcondes-de-Castro in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3104-4033
,
Thamiris Ferreira OliveiraLaboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Thamiris Ferreira Oliveira in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0276-4269
,
Renata SpezaniLaboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Renata Spezani in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6144-8525
,
Thatiany Souza MarinhoLaboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Thatiany Souza Marinho in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9976-9466
,
Luiz Eduardo Macedo CardosoLaboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Luiz Eduardo Macedo Cardoso in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6344-2290
,
Marcia Barbosa AguilaLaboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Marcia Barbosa Aguila in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3994-4589
, and
Carlos Alberto Mandarim-de-LacerdaLaboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Carlos Alberto Mandarim-de-Lacerda in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4134-7978
View More View Less

Correspondence should be addressed to C A Mandarim-de-Lacerda: mandarim@uerj.br
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

Obesity, adipose tissue inflammation, and nonalcoholic fatty liver disease (NAFLD) are associated with insulin resistance and type 2 diabetes (T2D). Cotadutide is a dual agonist GLP-1/glucagon, currently in a preclinical study phase 2 that presents an anti-obesity effect. Diet-induced obese (DIO) C57BL/6 mice were treated for 4 weeks with cotadutide (30 nm/kg once a day at 14:00 h). The study focused on epididymal white adipose tissue (eWAT), liver (NAFLD), inflammation, lipid metabolism, AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) pathways, and the endoplasmic reticulum (ER) stress. As a result, cotadutide controlled weight gain, glucose intolerance, and insulin resistance and showed beneficial effects on plasma markers in DIO mice (triacylglycerol, total cholesterol, alanine aminotransferase, and aspartate aminotransferase, leptin, adiponectin, monocyte chemoattractant protein-1, resistin, interleukin-6, tumor necrosis factor-alpha). Also, cotadutide lessened liver fat accumulation, eWAT proinflammatory markers, and ER stress. In addition, cotadutide improved lipid metabolism genes in eWAT, fatty acid synthase, peroxisome proliferator-activated receptor gamma and mitigates adipocyte hypertrophy and apoptosis. Furthermore, the effects of cotadutide were related to liver AMPK/mTOR pathway and ER stress. In conclusion, cotadutide induces weight loss and treats glucose intolerance and insulin resistance in DIO mice. In addition, cotadutide shows beneficial effects on liver lipid metabolism, mitigating steatosis, inflammation, and ER stress. Besides, in adipocytes, cotadutide decreases hypertrophy and reduces apoptosis. These actions rescuing the AMPK and mTOR pathway, improving lipid metabolism, and lessening NAFLD, inflammation, and ER stress in both eWAT and liver of DIO mice indicate cotadutide as a potentially new pharmacological treatment for T2D and associated obesity.

 

  • Collapse
  • Expand
  • Achari AE & & Jain SK 2017 Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International Journal of Molecular Sciences 18 1321. (https://doi.org/10.3390/ijms18061321)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aguila MB, Ornellas F & Mandarim-de-Lacerda CA 2021 Nutritional research and fetal programming: parental nutrition influences the structure and function of the organs. International Journal of Morphology 39 327334. (https://doi.org/10.4067/S0717-95022021000100327)

    • Search Google Scholar
    • Export Citation
  • Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H & Ren J 2023 Endoplasmic reticulum stress in liver diseases. Hepatology 77 619639. (https://doi.org/10.1002/hep.32562)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alexiadou K & Tan TM 2020 Gastrointestinal peptides as therapeutic targets to mitigate obesity and metabolic syndrome. Current Diabetes Reports 20 26. (https://doi.org/10.1007/s11892-020-01309-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW & Yuan J 1996 Human ICE/CED-3 protease nomenclature. Cell 87 171. (https://doi.org/10.1016/s0092-8674(0081334-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Battineni G, Sagaro GG, Chintalapudi N, Amenta F, Tomassoni D & & Tayebati SK 2021 Impact of obesity-induced inflammation on cardiovascular diseases (CVD). International Journal of Molecular Sciences 22 4798. (https://doi.org/10.3390/ijms22094798)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boland ML, Laker RC, Mather K, Nawrocki A, Oldham S, Boland BB, Lewis H, Conway J, Naylor J & Guionaud S et al.2020 Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis. Nature Metabolism 2 413431. (https://doi.org/10.1038/s42255-020-0209-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borges CC, Bringhenti I, Aguila MB & Mandarim-de-Lacerda CA 2020 Vitamin D restriction enhances periovarian adipose tissue inflammation in a model of menopause. Climacteric 23 99104. (https://doi.org/10.1080/13697137.2019.1597841)

    • Search Google Scholar
    • Export Citation
  • Buccitelli C & Selbach M 2020 mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews. Genetics 21 630644. (https://doi.org/10.1038/s41576-020-0258-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caon I, Parnigoni A, Viola M, Karousou E, Passi A & Vigetti D 2021 2021 cell energy metabolism and hyaluronan synthesis. Journal of Histochemistry and Cytochemistry 69 3547. (https://doi.org/10.1369/0022155420929772)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Catta-Preta M, Mendonca LS, Fraulob-Aquino J, Aguila MB & Mandarim-de-Lacerda CA 2011 A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies. Virchows Archiv 459 477485. (https://doi.org/10.1007/s00428-011-1147-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen CW, Guan BJ, Alzahrani MR, Gao Z, Gao L, Bracey S, Wu J, Mbow CA, Jobava R & Haataja L et al.2022 Adaptation to chronic ER stress enforces pancreatic beta-cell plasticity. Nature Communications 13 4621. (https://doi.org/10.1038/s41467-022-32425-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheng H, Gang X, He G, Liu Y, Wang Y, Zhao X & Wang G 2020 The molecular mechanisms underlying mitochondria-associated endoplasmic reticulum membrane-induced insulin resistance. Frontiers in Endocrinology (Lausanne) 11 592129. (https://doi.org/10.3389/fendo.2020.592129)

    • Search Google Scholar
    • Export Citation
  • Chusyd DE, Wang D, Huffman DM & Nagy TR 2016 Relationships between rodent white adipose fat pads and human white adipose fat depots. Frontiers in Nutrition 3 10. (https://doi.org/10.3389/fnut.2016.00010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Condon KJ, Orozco JM, Adelmann CH, Spinelli JB, van der Helm PW, Roberts JM, Kunchok T & & Sabatini DM 2021 Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. PNAS 118 e2022120118. (https://doi.org/10.1073/pnas.2022120118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Block CEM, Dirinck E, Verhaegen A & Van Gaal LF 2022 Efficacy and safety of high-dose glucagon-like peptide-1, glucagon-like peptide-1/glucose-dependent insulinotropic peptide, and glucagon-like peptide-1/glucagon receptor agonists in type 2 diabetes. Diabetes, Obesity and Metabolism 24 788805. (https://doi.org/10.1111/dom.14640)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Engin A 2017 Adiponectin-resistance in obesity. Advances in Experimental Medicine and Biology 960 415441. (https://doi.org/10.1007/978-3-319-48382-5_18)

  • Eriksson O, Haack T, Hijazi Y, Teichert L, Tavernier V, Laitinen I, Berglund JE, Antoni G, Velikyan I & Johansson L et al.2020 Receptor occupancy of dual glucagon-like peptide 1/glucagon receptor agonist SAR425899 in individuals with type 2 diabetes. Scientific Reports 10 16758. (https://doi.org/10.1038/s41598-020-73815-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fraulob JC, Ogg-Diamantino R, Santos CF, Aguila MB & Mandarim-de-Lacerda CA 2010 A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. Journal of Clinical Biochemistry and Nutrition 46 212223. (https://doi.org/10.3164/jcbn.09-83)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garcia-Macia M, Santos-Ledo A, Leslie J, Paish HL, Collins AL, Scott RS, Watson A, Burgoyne RA, White S & French J et al.2021 A mammalian target of rapamycin-perilipin 3 (mTORC1-Plin3) Pathway is essential to Activate Lipophagy and Protects against hepatosteatosis. Hepatology 74 34413459. (https://doi.org/10.1002/hep.32048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gorr TA & Vogel J 2015 Western blotting revisited: critical perusal of underappreciated technical issues. Proteomics. Clinical Applications 9 396405. (https://doi.org/10.1002/prca.201400118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu Y, Albuquerque CP, Braas D, Zhang W, Villa GR, Bi J, Ikegami S, Masui K, Gini B & Yang H et al.2017 mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT. Molecular Cell 67 128–138.e7. (https://doi.org/10.1016/j.molcel.2017.05.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guglielmi V, Cardellini M, Cinti F, Corgosinho F, Cardolini I, D'Adamo M, Zingaretti MC, Bellia A, Lauro D & Gentileschi P et al.2015 Omental adipose tissue fibrosis and insulin resistance in severe obesity. Nutrition and Diabetes 5 e175. (https://doi.org/10.1038/nutd.2015.22)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB & Vesterby A 1988 Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96 379394. (https://doi.org/10.1111/j.1699-0463.1988.tb05320.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gundersen HJG 1977 Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. Journal of Microscopy 111 219223. (https://doi.org/10.1111/j.1365-2818.1977.tb00062.x)

    • Search Google Scholar
    • Export Citation
  • Henderson SJ, Konkar A, Hornigold DC, Trevaskis JL, Jackson R, Fritsch Fredin M, Jansson-Lofmark R, Naylor J, Rossi A & Bednarek MA et al.2016 Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes, Obesity and Metabolism 18 11761190. (https://doi.org/10.1111/dom.12735)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inoki K, Kim J & Guan KL 2012 AMPK and mTOR in cellular energy homeostasis and drug targets. Annual Review of Pharmacology and Toxicology 52 381400. (https://doi.org/10.1146/annurev-pharmtox-010611-134537)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Israeli T, Riahi Y, Garzon P, Louzada RA, Werneck-de-Castro JP, Blandino-Rosano M, Yeroslaviz-Stolper R, Kadosh L, Tornovsky-Babeay S & Hacker G et al.2022 Nutrient sensor mTORC1 regulates insulin secretion by modulating beta-cell autophagy. Diabetes 71 453469. (https://doi.org/10.2337/db21-0281)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaelin WG 2005 Proline hydroxylation and gene expression. Annual Review of Biochemistry 74 115128. (https://doi.org/10.1146/annurev.biochem.74.082803.133142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kang L, Lantier L, Kennedy A, Bonner JS, Mayes WH, Bracy DP, Bookbinder LH, Hasty AH, Thompson CB & Wasserman DH 2013 Hyaluronan accumulates with high-fat feeding and contributes to insulin resistance. Diabetes 62 18881896. (https://doi.org/10.2337/db12-1502)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G & Quon MJ 2000 Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. Journal of Clinical Endocrinology and Metabolism 85 24022410. (https://doi.org/10.1210/jcem.85.7.6661)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim J & Seki E 2021 Crossing the Rubicon: adipose tissue autophagy breaks out NAFLD. Cellular and Molecular Gastroenterology and Hepatology 12 18771878. (https://doi.org/10.1016/j.jcmgh.2021.08.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee JH & & Lee J 2022 Endoplasmic reticulum (ER) stress and its role in pancreatic beta-cell dysfunction and senescence in Type 2 diabetes. International Journal of Molecular Sciences 23 4843. (https://doi.org/10.3390/ijms23094843)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li H, Min Q, Ouyang C, Lee J, He C, Zou MH & Xie Z 2014 AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochimica et Biophysica Acta 1842 18441854. (https://doi.org/10.1016/j.bbadis.2014.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Z, Zhang C, Du JX, Zhao J, Shi MT, Jin MW & Liu H 2020 Adipocytes promote tumor progression and induce PD-L1 expression via TNF-alpha/IL-6 signaling. Cancer Cell International 20 179. (https://doi.org/10.1186/s12935-020-01269-w)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lutz TA & & Woods SC 2012 Overview of animal models of obesity. Current Protocols in Pharmacology 58 5.61.15.61.18. (https://doi.org/10.1002/0471141755.ph0561s58)

    • Search Google Scholar
    • Export Citation
  • Mahmoud HM & El-Sakhawy YN 2011 Significance of Bcl-2 and Bcl-6 immunostaining in B-Non Hodgkin's lymphoma. Hematology Reports 3 e26. (https://doi.org/10.4081/hr.2011.e26)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mandarim-de-Lacerda CA, Del Sol M, Vazquez B & Aguila MB 2021 Mice as an animal model for the study of adipose tissue and obesity. International Journal of Morphology 39 15211528. (https://doi.org/10.4067/S0717-95022021000601521)

    • Search Google Scholar
    • Export Citation
  • Mandarim-de-Lacerda CA & Del-Sol M 2017 Tips for studies with quantitative morphology (morphometry and stereology). International Journal of Morphology 35 14821494. (https://doi.org/10.4067/S0717-95022017000401482)

    • Search Google Scholar
    • Export Citation
  • Menikdiwela KR, Guimaraes JPT, Ramalingam L, Kalupahana NS, Dufour JM, Washburn RL & Moustaid-Moussa N 2021 Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity. Critical Reviews in Biochemistry and Molecular Biology 56 455481. (https://doi.org/10.1080/10409238.2021.1925219)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • More VR, Lao J, McLaren DG, Cumiskey AM, Murphy BA, Chen Y, Previs S, Stout S, Patel R & Satapati S et al.2017 Glucagon like receptor 1/ glucagon dual agonist acutely enhanced hepatic lipid clearance and suppressed de novo lipogenesis in mice. PLoS One 12 e0186586. (https://doi.org/10.1371/journal.pone.0186586)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V, Sanyal AJ, Sejling AS, Harrison SA & Investigators NN 2021 A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. New England Journal of Medicine 384 11131124. (https://doi.org/10.1056/NEJMoa2028395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T & Isenovic ER 2021 Leptin and obesity: role and clinical implication. Frontiers in Endocrinology (Lausanne) 12 585887. (https://doi.org/10.3389/fendo.2021.585887)

    • Search Google Scholar
    • Export Citation
  • Pang J, Xi C, Huang X, Cui J, Gong H & Zhang T 2016 Effects of excess energy intake on glucose and lipid metabolism in C57BL/6 mice. PLoS One 11 e0146675. (https://doi.org/10.1371/journal.pone.0146675)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park Y, Reyna-Neyra A, Philippe L & Thoreen CC 2017 mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4. Cell Reports 19 10831090. (https://doi.org/10.1016/j.celrep.2017.04.042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parker VER, Robertson D, Wang T, Hornigold DC, Petrone M, Cooper AT, Posch MG, Heise T, Plum-Moerschel L & Schlichthaar H et al.2020 Efficacy, safety, and mechanistic insights of cotadutide, a dual receptor glucagon-like Peptide-1 and glucagon agonist. Journal of Clinical Endocrinology and Metabolism 105 803820. (https://doi.org/10.1210/clinem/dgz047)

    • Search Google Scholar
    • Export Citation
  • Pickford P, Lucey M, Rujan RM, McGlone ER, Bitsi S, Ashford FB, Correa IR, Hodson DJ, Tomas A & Deganutti G et al.2021 Partial agonism improves the anti-hyperglycaemic efficacy of an oxyntomodulin-derived GLP-1R/GCGR co-agonist. Molecular Metabolism 51 101242. (https://doi.org/10.1016/j.molmet.2021.101242)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pontes-da-Silva RM, de Souza Marinho T, de Macedo Cardoso LE, Mandarim-de-Lacerda CA & Aguila MB 2022 Obese mice weight loss role on nonalcoholic fatty liver disease and endoplasmic reticulum stress treated by a GLP-1 receptor agonist. International Journal of Obesity 46 2129. (https://doi.org/10.1038/s41366-021-00955-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rao X, Lai D & Huang X 2013 A new method for quantitative real-time polymerase chain reaction data analysis. Journal of Computational Biology 20 703711. (https://doi.org/10.1089/cmb.2012.0279)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ray I, Mahata SK & De RK 2016 Obesity: an immunometabolic perspective. Frontiers in Endocrinology (Lausanne) 7 157. (https://doi.org/10.3389/fendo.2016.00157)

    • Search Google Scholar
    • Export Citation
  • Reeves PG, Nielsen FH & Fahey GC Jr 1993 AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition 123 19391951. (https://doi.org/10.1093/jn/123.11.1939)

    • Search Google Scholar
    • Export Citation
  • Reis-Barbosa PH, Marcondes-de-Castro IA, Marinho TS, Aguila MB & Mandarim-de-Lacerda CA 2022a The mTORC1/AMPK pathway plays a role in the beneficial effects of semaglutide (GLP-1 receptor agonist) on the liver of obese mice. Clinics and Research in Hepatology and Gastroenterology 46 101922. (https://doi.org/10.1016/j.clinre.2022.101922)

    • Search Google Scholar
    • Export Citation
  • Reis-Barbosa PH, Marinho TS, Matsuura C, Aguila MB, de Carvalho JJ & Mandarim-de-Lacerda CA 2022b The obesity and nonalcoholic fatty liver disease mouse model revisited: liver oxidative stress, hepatocyte apoptosis, and proliferation. Acta Histochemica 124 151937. (https://doi.org/10.1016/j.acthis.2022.151937)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saltiel AR & Olefsky JM 2017 Inflammatory mechanisms linking obesity and metabolic disease. Journal of Clinical Investigation 127 14. (https://doi.org/10.1172/JCI92035)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ & Steinberg GR 2016 Treatment of nonalcoholic fatty liver disease: role of AMPK. American Journal of Physiology. Endocrinology and Metabolism 311 E730E740. (https://doi.org/10.1152/ajpendo.00225.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spezani R & Mandarim-de-Lacerda CA 2022 The current significance and prospects for the use of dual receptor agonism GLP-1/glucagon. Life Sciences 288 120188. (https://doi.org/10.1016/j.lfs.2021.120188)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun K, Park J, Gupta OT, Holland WL, Auerbach P, Zhang N, Goncalves Marangoni R, Nicoloro SM, Czech MP & Varga J et al.2014 Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications 5 3485. (https://doi.org/10.1038/ncomms4485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tinahones FJ, Coin Araguez L, Murri M, Oliva Olivera W, Mayas Torres MD, Barbarroja N, Gomez Huelgas R, Malagon MM & El Bekay R 2013 Caspase induction and BCL2 inhibition in human adipose tissue: a potential relationship with insulin signaling alteration. Diabetes Care 36 513521. (https://doi.org/10.2337/dc12-0194)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Unamuno X, Gomez-Ambrosi J, Rodriguez A, Becerril S, Fruhbeck G & Catalan V 2018 Adipokine dysregulation and adipose tissue inflammation in human obesity. European Journal of Clinical Investigation 48 e12997. (https://doi.org/10.1111/eci.12997)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, Lv Q, Chen X & & Zhang Z 2019 The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells 8 1597. (https://doi.org/10.3390/cells8121597)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y, Guo G, Zhou W, Ge Y, Fan Z, Liu Q & Gao Y 2021 Sestrin2 protects against bavachin induced ER stress through AMPK/mTORC1 signaling pathway in HepG2 cells. Journal of Pharmacological Sciences 145 175186. (https://doi.org/10.1016/j.jphs.2020.11.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao Y, Gu X, Zhang N, Kolonin MG, An Z & Sun K 2016 Divergent functions of endotrophin on different cell populations in adipose tissue. American Journal of Physiology. Endocrinology and Metabolism 311 E952E963. (https://doi.org/10.1152/ajpendo.00314.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu Y, Li N, Huang M, Bartels M, Dogne S, Zhao S, Chen X, Crewe C, Straub L & Vishvanath L et al.2021 Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nature Communications 12 4829. (https://doi.org/10.1038/s41467-021-25025-4)

    • PubMed
    • Search Google Scholar
    • Export Citation