mPRα and PR co-operate in progesterone inhibition of endothelial cell focal adhesion

in Journal of Molecular Endocrinology
Authors:
Yefei PangMarine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA

Search for other papers by Yefei Pang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1773-1697
and
Peter ThomasMarine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA

Search for other papers by Peter Thomas in
Current site
Google Scholar
PubMed
Close
View More View Less

Correspondence should be addressed to Y Pang or P Thomas: yfpang@utexas.edu or peter.thomas@utexas.edu
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

Progesterone causes vascular smooth muscle cell relaxation through membrane progesterone receptors (mPRs), which are members of the progestin and adipoQ receptor (PAQR) family, and nuclear PRs (nPRs). However, beneficial vascular effects of progesterone in preventing pre-atherosclerosis and the involvement of mPRs and nPRs remain unclear. The results show short- to long-term treatments with 100 nM progesterone (P4) and specific agonists for mPRs, OD 02-0, and nPRs, R5020, inhibited pre-atherosclerotic events in human umbilical vein endothelial cells (HUVECs), decreasing focal adhesion (FA) by monocytes, FA signaling, HUVEC migration and invasion, and vinculin expression. Progesterone and OD 02-0, but not R5020, inhibited phosphorylation of Src and focal adhesion kinase, critical kinases of FA signaling, within 20 min and migration and invasion of HUVECs and monocyte adhesion after 3 h. These inhibitory P4 and 02-0 effects were attenuated with MAP kinase and Pi3k inhibitors, indicating involvement of these kinases in this mPR-mediated action. However, after 16 h, OD 02-0 was no longer effective in inhibiting FA signaling, while both progesterone and R5020 decreased the activity of the two kinases. Knockdown of receptor expression with siRNA confirmed that mPRα mediates short-term and nPR long-term inhibitory effects of progesterone on FA signaling. Thus, progesterone inhibition of FA signaling and pre-atherosclerosis is coordinated through mPRα and nPRs.

Supplementary Materials

 

  • Collapse
  • Expand
  • Bochkov VN, Philippova M, Oskolkova O, Kadl A, Furnkranz A, Karabeg E, Afonyushkin T, Gruber F, Breuss J & Minchenko A et al.2006 Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions. Circulation Research 99 900908. (https://doi.org/10.1161/01.RES.0000245485.04489.ee)

    • Search Google Scholar
    • Export Citation
  • Brismaar K & Nisson SE 2009 Interrelation and associations of serum levels of steroids and pituitary hormones with markers of insulin resistance, inflammatory activity, and renal function in men and women age > 70 years in a 8-year longitudinal study of opposite sex twins. Gender Medicine 6 123135. (https://doi.org/10.1016/j.genm.2009.01.001)

    • Search Google Scholar
    • Export Citation
  • Burridge K & Feramisco JR 1980 Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell 19 587595. (https://doi.org/10.1016/s0092-8674(8080035-3)

    • Search Google Scholar
    • Export Citation
  • Bustos P, Duffau C, Pacheco C & Ulloa N 2008 β-Sitosterol modulation of monocyte-endothelial cell interaction: a comparison to female hormones. Maturitas 60 202208. (https://doi.org/10.1016/j.maturitas.2008.06.002)

    • Search Google Scholar
    • Export Citation
  • Checkouri E, Blanchard V & Meilhac O 2021 Macrophages in atherosclerosis, first or second row players? Biomedicines 9 12141245. (https://doi.org/10.3390/biomedicines9091214)

    • Search Google Scholar
    • Export Citation
  • Chi J-T, Chang HJ, Haraldsen G, Jahnsen FL, Troyandskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M & Bostein D et al.2003 Endothelial cell diversity revealed by global expression profiling. PNAS 100 110623110628. (https://doi.org/10.1073_pnas.1434429100)

    • Search Google Scholar
    • Export Citation
  • Choi JH, Yoo JY, Kim SO, Yoo SE & Oh GT 2012 KR-31543 reduces the production of proinflammatory molecules in human endothelial cell and monocytes and attenuates atherosclerosis in mouse model. Experimental and Molecular Medicine 44 733–739. (https://doi.org/10.3858/emm.2012.44.12.081)

    • Search Google Scholar
    • Export Citation
  • Daugherty A, Manning MW & Cassis LA 2000 Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. Journal of Clinical Investigation 105 16051612. (https://doi.org/10.1172/JCI7818)

    • Search Google Scholar
    • Export Citation
  • Deroanne CF, Colige AC, Nusgens BV & Lapiere CM 1996 Modulation of expression and assembly of vinculin during in vitro fibrillar collagen-induced angiogenesis and its reversal. Experimental Cell Research 224 215223. (https://doi.org/10.1006/excr.1996.0131)

    • Search Google Scholar
    • Export Citation
  • Fosbrink M, Niculescu F, Rus V, Shin ML & Rus H 2006 C5b-9-induced endothelial cell proliferation and migration are dependent on Akt inactivation of forkhead transcription factor FOXO1. Journal of Biological Chemistry 281 1900919018. (https://doi.org/10.1074/jbc.M602055200)

    • Search Google Scholar
    • Export Citation
  • Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ & Mensah GA et al.2013 Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382 13291340. (https://doi.org/10.1016/S0140-6736(1361249-0)

    • Search Google Scholar
    • Export Citation
  • Geiger B 1979 A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18 193205. (https://doi.org/10.1016/0092)

    • Search Google Scholar
    • Export Citation
  • Gimbrone MA & García-Cardeña G 2016 Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research 118 620636. (https://doi.org/10.1161/CIRCRESAHA.115.306301)

    • Search Google Scholar
    • Export Citation
  • Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, Rehmann H & de Rooij J 2012 Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. Journal of Cell Biology 196 641652. (https://doi.org/10.1083/jcb.201108120)

    • Search Google Scholar
    • Export Citation
  • Jarray R, Pavoni S, Borriello L, Allain B, Lopez N, Bianco S, Liu WQ, Biard D, Demange L & Hermine O et al.2015 Disruption of phactr-1 pathway triggers pro-inflammatory and pro-atherogenic factors: new insights in atherosclerosis development. Biochimie 118 151161. (https://doi.org/10.1016/j.biochi.2015.09.008)

    • Search Google Scholar
    • Export Citation
  • Jiménez E, de la Blanca EP, Urso L, González I, Salas J & Montiel M 2009 Angiotensin II induces MMP 2 activity via FAK/JNK pathway in human endothelial cells. Biochemical and Biophysical Research Communications 380 769774. (https://doi.org/10.1016/j.bbrc.2009.01.142)

    • Search Google Scholar
    • Export Citation
  • Kelder J, Azevedo R, Pang Y, de Vlie J, Dong J & Thomas P 2010 Comparison between steroid binding to membrane progesterone receptor alpha (mPRalpha) and to nuclear progesterone receptor: correlation with physicochemical properties assessed by comparative molecular field analysis and identification of mPRalpha-specific agonists. Steroids 75 314322. (https://doi.org/10.1016/j.steroids.2010.01.010)

    • Search Google Scholar
    • Export Citation
  • Kintscher U, Wakino S, Kim S, Fleck E, Hsueh WA & Law RE 2001 Angiotensin II induces migration and Pyk2/paxillin phosphorylation of human monocytes. Hypertension 37 587593. (https://doi.org/10.1161/01.HYP.37.2.587)

    • Search Google Scholar
    • Export Citation
  • Koga M, Kanaoka Y, Sugiyama K, Ohishi K, Ejima Y, Hisanaga M, Kataoka Y & Yamauchi A 2017 Varenicline promotes endothelial cell migration by lowering vascular endothelial-cadherin levels via the activated alpha7 nicotinic acetylcholine receptor-mitogen activated protein kinase axis. Toxicology 390 19. (https://doi.org/10.1016/j.tox.2017.08.006)

    • Search Google Scholar
    • Export Citation
  • Lang I, Schweizer A, Hiden U, Ghaffari-Tabrizi N, Hagendorfer G, Bilban M, Pabst MA, Korgun ET, Dohr G & Desoy G 2008 Human fetal placental endothelial cells have a mature arterial and a juvenile Venus phenotype with adipogenic and osteogenic differentiation potential. Differentiation: Research in Biological Diversity 76 10311043. (https://doi.org/10.1111/j.1432-0436.2008.00302.x)

    • Search Google Scholar
    • Export Citation
  • Laslett LJ, Alagona Jr P, Clark 3rd BA, Drozda Jr JP, Saldivar F, Wilson SR, Poe C & Hart M 2012 The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. Journal of the American College of Cardiology 60 (25 S upplement) S1S49. (https://doi.org/10.1016/j.jacc.2012.11.002)

    • Search Google Scholar
    • Export Citation
  • Lau S, Gossen M, Lendlein A & Jung F 2021 Venous and arterial endothelial cells from human umbilical cords: potential cell sources for cardiovascular research. International Journal of Molecular Sciences 22 978. (https://doi.org/10.3390/ijms22020978)

    • Search Google Scholar
    • Export Citation
  • Lee TS, Lin JJ, Huo YN & Lee WS 2015 Progesterone inhibits endothelial cell migration through suppression of the Rho activity mediated by cSrc activation. Journal of Cellular Biochemistry 116 14111418. (https://doi.org/10.1002/jcb.25101)

    • Search Google Scholar
    • Export Citation
  • Li S, Huang NF & Hsu S 2005 Mechanotransduction in endothelial cell migration. Journal of Cellular Biochemistry 96 11101126. (https://doi.org/10.1002/jcb.20614)

    • Search Google Scholar
    • Export Citation
  • Liu Y, Luo G, Tang Q, Song Y, Liu D, Wang H & Ma J 2022 Methyltransferase-like 14 silencing relieves the development of atherosclerosis via m6A modification of p65 mRNA. Bioengineered 13 1183211843. (https://doi.org/10.1080/21655979.2022.2031409)

    • Search Google Scholar
    • Export Citation
  • Man JJ, Beckman JA & Jaffe IZ 2020 Sex as a biological variable in atherosclerosis. Circulation Research 126 12971319. (https://doi.org/10.1161/CIRCRESAHA.120.315930)

    • Search Google Scholar
    • Export Citation
  • Mestas J & Ley K 2008 Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends in Cardiovascular Medicine 18 228232. (https://doi.org/10.1016/j.tcm.2008.11.004)

    • Search Google Scholar
    • Export Citation
  • Meyer T, Brink U, Unterberg C, Stohr S, Kreuzer H & Buchwald AB 1994 Expression of meta-vinculin in human coronary artheriosclerosis is related to the histological grade of plaque formation. Atherosclerosis 111 111119. (https://doi.org/10.1016/0021-9150(9490196-1)

    • Search Google Scholar
    • Export Citation
  • Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C, Daniel C, Amann K, Aterburn JB, Barton M & Prossnitz ER 2014 G protein-coupled estrogen receptor protects from atherosclerosis. Scientific Reports 4 7564. (https://doi.org/10.1038/srep07564)

    • Search Google Scholar
    • Export Citation
  • Monteiro C, Kasahara T, Sacramento PM, Dias A, Leite S, Silva VG, Gupta S, Agrawal A & Bento CAM 2021 Human pregnancy levels of estrogen and progesterone contribute to humoral immunity by activating TFH/B cell axis. European Journal of Immunology 51 167179. (https://doi.org/10.1002/eji.202048658)

    • Search Google Scholar
    • Export Citation
  • Montiel M, de la Blanc EP & Jiménez E 2005 Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications 327 971978. (https://doi.org/10.1016/j.bbrc.2004.12.110)

    • Search Google Scholar
    • Export Citation
  • Muneyyirci-Delale O, Dalloul M, Nacharaju VL, Altura BM & Altura BT 1999 Serum ionized magnesium and calcium and sex hormones in healthy young men; importance of serum progesterone level. Fertility and Sterility 72 817822. (https://doi.org/10.1016/S0015-0282(9900386-6)

    • Search Google Scholar
    • Export Citation
  • Nofer JR 2012 Estrogens and atherosclerosis: insights from animal models and cell systems. Journal of Molecular Endocrinology 48 R13R29. (https://doi.org/10.1530/JME-11-0145)

    • Search Google Scholar
    • Export Citation
  • Okuda M, Kawahara Y, Nakayama I, Hoshijima M & Yokoyama M 1995 Angiotensin II transduces its signal to focal adhesions via angiotensin II type 1 receptors in vascular smooth muscle cells. FEBS Letters 368 343347. (https://doi.org/10.1016/0014-5793(9500693-4)

    • Search Google Scholar
    • Export Citation
  • Otsuki M, Saito H, Xu X, Sumitani S, Kouhara H, Kishimoto T & Kasayama S 2001 Progesterone, but not medroxyprogesterone, inhibits vascular cell adhesion molecule-1 expression in human vascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology 21 243248. (https://doi.org/10.1161/01.atv.21.2.243)

    • Search Google Scholar
    • Export Citation
  • Pan Y, Zhou F, Song Z, Huang H, Chen Y, Shen Y, Jia Y & Chen J 2018 Oleanolic acid protects against pathogenesis of atherosclerosis, possible via FXR-mediated angiotensin (Ang)-(1–7) upregulation. Biomedicine and Pharmacotherapy 97 16941700. (https://doi.org/10.1016/j.biopha.2017.11.151)

    • Search Google Scholar
    • Export Citation
  • Pang Y & Thomas P 2017 Additive effects of low concentrations of estradiol-17beta and progesterone on nitric oxide production by human vascular endothelial cells through shared signaling pathways. Journal of Steroid Biochemistry and Molecular Biology 165 258267. (https://doi.org/10.1016/j.jsbmb.2016.06.014)

    • Search Google Scholar
    • Export Citation
  • Pang Y & Thomas P 2018 Progesterone induces relaxation of human umbilical cord vascular smooth muscle cells through mPRalpha (PAQR7). Molecular and Cellular Endocrinology 474 2034. (https://doi.org/10.1016/j.mce.2018.02.003)

    • Search Google Scholar
    • Export Citation
  • Pang Y & Thomas P 2019 Role of mPRalpha (PAQR7) in progesterone-induced Ca2+ decrease in human vascular smooth muscle cells. Journal of Molecular Endocrinology 63 199213. (https://doi.org/10.1530/JME-19-0019)

    • Search Google Scholar
    • Export Citation
  • Pang Y, Dong J & Thomas P 2015 Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor-alpha. American Journal of Physiology: Endocrinology and Metabolism 308 E899E911. (https://doi.org/10.1152/ajpendo.00527.2014)

    • Search Google Scholar
    • Export Citation
  • Shafi O 2020 Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thrombosis Journal 18 28. (https://doi.org/10.1186/s12959-020-00240-z)

    • Search Google Scholar
    • Export Citation
  • Simoncini T & Genazzani AR 2000 Direct vascular effects of estrogens and selective estrogen receptor modulators. Current Opinion in Obstetrics and Gynecology 12 181187. (https://doi.org/10.1097/00001703-200006000-00004)

    • Search Google Scholar
    • Export Citation
  • Simoncini T, Mannella P, Fornari L, Caruso A, Willis MY, Garibaldi S, Baldacci C & Genazzani AR 2004 Differential signal transduction of progesterone and medroxyprogesterone acetate in human endothelial cells. Endocrinology 145 57455756. (https://doi.org/10.1210/en.2004-0510)

    • Search Google Scholar
    • Export Citation
  • Tabas I, Williams KJ & Boren J 2007 Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116 18321844. (https://doi.org/10.1161/CIRCULATIONAHA.106.676890)

    • Search Google Scholar
    • Export Citation
  • Tarzami ST, Hsieh SS, Esterman MA & Singh JP 2005 Staurosporine promotes endothelial cell assembly and FAK phosphorylation during in vitro angiogenesis. Journal of Cardiovascular Pharmacology 45 2229. (https://doi.org/10.1097/00005344-200501000-00005)

    • Search Google Scholar
    • Export Citation
  • Theodorou K & Boon RA 2018 Endothelial cell metabolism in atherosclerosis. Frontiers in Cell and Developmental Biology 6 82. (https://doi.org/10.3389/fcell.2018.00082)

    • Search Google Scholar
    • Export Citation
  • Thomas P 2008 Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Frontiers in Neuroendocrinology 29 292312. (https://doi.org/10.1016/j.yfrne.2008.01.001)

    • Search Google Scholar
    • Export Citation
  • Thomas P & Pang Y 2012 Membrane progesterone receptors (mPRs): evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells. Neuroendocrinology 96 162171. (https://doi.org/10.1159/000339822)

    • Search Google Scholar
    • Export Citation
  • Thomas P & Pang Y 2013 Protective actions of progesterone in the cardiovascular system: potential role of membrane progesterone receptors (mPRs) in mediating rapid effects. Steroids 78 583588. (https://doi.org/10.1016/j.steroids.2013.01.003)

    • Search Google Scholar
    • Export Citation
  • Thomas P, Pang Y, Dong J, Groenen P, Kelder J, de Vlieg J, Zhu Y & & Tubbs C 2007 Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evolutionary origins. Endocrinology 148 705718. (https://doi.org/10.1210/en.2006-0974)

    • Search Google Scholar
    • Export Citation
  • Thorin E & Shreeve SM 1998 Heterogeneity of vascular endothelial cells in normal and disease states. Pharmacology and Therapeutics 78 155166. (https://doi.org/10.1016/s0163-7258(9800005-9)

    • Search Google Scholar
    • Export Citation
  • Watanabe T & Sato K 2020 Roles of kispeptin/GPR54 system in pathomechanism of atherosclerosis. Nutrition, Metabolism, and Cardiovascular Diseases 30 889895. (https://doi.org/10.1016/j.numecd.2020.02.017)

    • Search Google Scholar
    • Export Citation
  • Weis SM, Lim ST, Lutu-Fuga KM, Barnes LA, Chen XL, Gothert JR, Shen TL, Guan JL, Schlaepfer DD & Cheresh DA 2008 Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK. Journal of Cell Biology 181 4350. (https://doi.org/10.1083/jcb.200710038)

    • Search Google Scholar
    • Export Citation
  • Wiebe JP & Muzia D 2001 The endogenous progesterone metabolite, 5a-pregnane-3,20-dione, decreases cell-substrate attachment, adhesion plaques, vinculin expression, and polymerized F-actin in MCF-7 breast cancer cells. Endocrine 16 714. (https://doi.org/10.1385/endo:16:1:07)

    • Search Google Scholar
    • Export Citation
  • Wilkinson JM, Hayes S, Thompson D, Whitney P & Bi K 2008 Compound profiling using a panel of steroid hormone receptor cell-based assays. Journal of Biomolecular Screening 13 755765. (https://doi.org/10.1177/1087057108322155)

    • Search Google Scholar
    • Export Citation
  • Yamaura T, Kasaoka T, Iijima N, Kimura M & Hatakeyama S 2019 Evaluation of therapeutic effects of FAK inhibition in murine models of atherosclerosis. BMC Research Notes 12 200. (https://doi.org/10.1186/s13104-019-4220-5)

    • Search Google Scholar
    • Export Citation
  • Zhang S, Zhu X & Li G 2020 E2F1/SNHG7/miR-186-5p/MMP2 axis modulates the proliferation and migration of vascular endothelial cell in atherosclerosis. Life Sciences 257 118013. (https://doi.org/10.1016/j.lfs.2020.118013)

    • Search Google Scholar
    • Export Citation
  • Zheng S, Huang J, Zhou K, Xiang Q, Zhang Y, Tan Z, Simoncini T, Fu X & Wang T 2012 Progesterone enhances vascular endothelial cell migration via activation of focal adhesion kinase. Journal of Cellular and Molecular Medicine 16 296305. (https://doi.org/10.1111/j.1582-4934.2011.01305.x)

    • Search Google Scholar
    • Export Citation