Regulation of mineralocorticoid receptor activation by circadian protein TIMELESS

in Journal of Molecular Endocrinology
Authors:
Colin D ClyneCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia

Search for other papers by Colin D Clyne in
Current site
Google Scholar
PubMed
Close
,
Kevin P KusnadiCardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia

Search for other papers by Kevin P Kusnadi in
Current site
Google Scholar
PubMed
Close
,
Alexander CowcherCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia

Search for other papers by Alexander Cowcher in
Current site
Google Scholar
PubMed
Close
,
James MorganCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia

Search for other papers by James Morgan in
Current site
Google Scholar
PubMed
Close
,
Jun YangCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia

Search for other papers by Jun Yang in
Current site
Google Scholar
PubMed
Close
,
Peter J FullerCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia

Search for other papers by Peter J Fuller in
Current site
Google Scholar
PubMed
Close
, and
Morag J YoungCardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
University of Melbourne and Baker HDI Department of Cardiometabolic Health and Disease, Melbourne, Australia

Search for other papers by Morag J Young in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0450-5375
View More View Less

Correspondence should be addressed to M J Young: morag.young@baker.edu.au

*(C D Clyne and K P Kusnadi contributed equally to this work)

Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

The mineralocorticoid receptor (MR) is a ligand-activated transcription factor that regulates cardiorenal physiology and disease. Ligand-dependent MR transactivation involves a conformational change in the MR and recruitment of coregulatory proteins to form a unique DNA-binding complex at the hormone response element in target gene promoters. Differences in the recruitment of coregulatory proteins can promote tissue-, ligand- or gene-specific transcriptional outputs. The goal of this study was to evaluate the circadian protein TIMELESS as a selective regulator of MR transactivation. TIMELESS has an established role in cell cycle regulation and DNA repair. TIMELESS may not be central to mammalian clock function and does not bind DNA; however, RNA and protein levels oscillate over 24 h. Co-expression of TIMELESS down-regulated MR transactivation of an MR-responsive reporter in HEK293 cells, yet enhanced transactivation mediated by other steroid receptors. TIMELESS markedly inhibited MR transactivation of synthetic and native gene promoters and expression of MR target genes in H9c2 cardiac myoblasts. Immunofluorescence showed aldosterone induces colocalisation of TIMELESS and MR, although a direct interaction was not confirmed by coimmunoprecipitation. Potential regulation of circadian clock targets cryptochrome 1 and 2 by TIMELESS was not detected. However, our data suggest that these effects may involve TIMELESS coactivation of oestrogen receptor alpha (ERα). Taken together, these data suggest that TIMELESS may contribute to MR transcriptional outputs via enhancing ERα inhibitory actions on MR transactivation. Given the variable expression of TIMELESS in different cell types, these data offer new opportunities for the development of MR modulators with selective actions.

Supplementary Materials

 

  • Collapse
  • Expand
  • AIHW 2022 Australia’s Health 2022: The Eighteenth Biennial Health Report of the Australian Institute of Health and Welfare. Canberra, Australia: Australian Institute of Health and Welfare.

    • Search Google Scholar
    • Export Citation
  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE & Evans RM 1987 Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237 268275. (https://doi.org/10.1126/science.3037703)

    • Search Google Scholar
    • Export Citation
  • Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR & Gillette MU 2003 Requirement of mammalian timeless for circadian rhythmicity. Science 302 439442. (https://doi.org/10.1126/science.1086593)

    • Search Google Scholar
    • Export Citation
  • Cai YD & Chiu JC 2021 Timeless in animal circadian clocks and beyond. FEBS Journal 289 65596575. (https://doi.org/10.1111/febs.16253)

  • Cai YD, Xue Y, Truong CC, Del Carmen-Li J, Ochoa C, Vanselow JT, Murphy KA, Li YH, Liu X & Kunimoto BL et al.2021 CK2 inhibits TIMELESS nuclear export and modulates CLOCK transcriptional activity to regulate circadian rhythms. Current Biology 31 502.e7–514.e7. (https://doi.org/10.1016/j.cub.2020.10.061)

    • Search Google Scholar
    • Export Citation
  • Elgohary N, Pellegrino R, Neumann O, Elzawahry HM, Saber MM, Zeeneldin AA, Geffers R, Ehemann V, Schemmer P, Schirmacher P, et al.2015 Protumorigenic role of Timeless in hepatocellular carcinoma. International Journal of Oncology 46 597606. (https://doi.org/10.3892/ijo.2014.2751)

    • Search Google Scholar
    • Export Citation
  • Engelen E, Janssens RC, Yagita K, Smits VA, Van Der Horst GT & Tamanini F 2013 Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock. PLoS ONE 8 e56623. (https://doi.org/10.1371/journal.pone.0056623)

    • Search Google Scholar
    • Export Citation
  • Fejes-Tóth G, Pearce D & Náray-Fejes-Tóth A 1998 Subcellular localization of mineralocorticoid receptors in living cells: effects of receptor agonists and antagonists. PNAS 95 29732978. (https://doi.org/10.1073/pnas.95.6.2973)

    • Search Google Scholar
    • Export Citation
  • Fiol DF, Mak SK & Kültz D 2007 Specific TSC22 domain transcripts are hypertonically induced and alternatively spliced to protect mouse kidney cells during osmotic stress. FEBS Journal 274 109124. (https://doi.org/10.1111/j.1742-4658.2006.05569.x)

    • Search Google Scholar
    • Export Citation
  • Fletcher EK, Kanki M, Morgan J, Ray DW, Delbridge L, Fuller PJ, Clyne CD & Young MJ 2019 Cardiomyocyte transcription is controlled by combined MR and circadian clock signalling. Journal of Endocrinology 241 1729. (https://doi.org/10.1530/JOE-18-0584)

    • Search Google Scholar
    • Export Citation
  • Fu A, Leaderer D, Zheng T, Hoffman AE, Stevens RG & Zhu Y 2012 Genetic and epigenetic associations of circadian gene TIMELESS and breast cancer risk. Molecular Carcinogenesis 51 923929. (https://doi.org/10.1002/mc.20862)

    • Search Google Scholar
    • Export Citation
  • Fuller PJ & Young MJ 2005 Mechanisms of mineralocorticoid action. Hypertension 46 12271235. (https://doi.org/10.1161/01.HYP.0000193502.77417.17)

    • Search Google Scholar
    • Export Citation
  • Funder JW, Pearce PT, Smith R & Smith AI 1988 Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242 583585. (https://doi.org/10.1126/science.2845584)

    • Search Google Scholar
    • Export Citation
  • Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A, Young MW & Weitz CJ 1995 Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270 811815. (https://doi.org/10.1126/science.270.5237.811)

    • Search Google Scholar
    • Export Citation
  • Gomez-Sanchez CE, De Rodriguez AF, Romero DG, Estess J, Warden MP, Gomez-Sanchez MT & Gomez-Sanchez EP 2006 Development of a panel of monoclonal antibodies against the mineralocorticoid receptor. Endocrinology 147 13431348. (https://doi.org/10.1210/en.2005-0860)

    • Search Google Scholar
    • Export Citation
  • Gotter AL, Manganaro T, Weaver DR, Kolakowski Jr LF, Possidente B, Sriram S, Maclaughlin DT & Reppert SM 2000 A time-less function for mouse timeless. Nature Neuroscience 3 755756. (https://doi.org/10.1038/77653)

    • Search Google Scholar
    • Export Citation
  • Gotter AL, Suppa C & Emanuel BS 2007 Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors. Journal of Molecular Biology 366 3652. (https://doi.org/10.1016/j.jmb.2006.10.097)

    • Search Google Scholar
    • Export Citation
  • Griffin Jr EA, Staknis D & Weitz CJ 1999 Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286 768771. (https://doi.org/10.1126/science.286.5440.768)

    • Search Google Scholar
    • Export Citation
  • Hardin PE 2005 The circadian timekeeping system of Drosophila. Current Biology 15 R714R722. (https://doi.org/10.1016/j.cub.2005.08.019)

  • Kanki M & Young MJ 2021 Corticosteroids and circadian rhythms in the cardiovascular system. Current Opinion in Pharmacology 57 2127. (https://doi.org/10.1016/j.coph.2020.10.007)

    • Search Google Scholar
    • Export Citation
  • Koike N, Hida A, Numano R, Hirose M, Sakaki Y & Tei H 1998 Identification of the mammalian homologues of the Drosophila timeless gene, Timeless. FEBS Letters 441 427431. (https://doi.org/10.1016/s0014-5793(9801597-x)

    • Search Google Scholar
    • Export Citation
  • Kondratov RV & Antoch MP 2007 Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends in Cell Biology 17 311317. (https://doi.org/10.1016/j.tcb.2007.07.001)

    • Search Google Scholar
    • Export Citation
  • Leman AR, Noguchi C, Lee CY & Noguchi E 2010 Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. Journal of Cell Science 123 660670. (https://doi.org/10.1242/jcs.057984)

    • Search Google Scholar
    • Export Citation
  • Magne Nde CB, Casas Gimeno G, Docanto M, Knower KC, Young MJ, Buehn J, Sayed E & Clyne CD 2018 Timeless is a novel estrogen receptor co-activator involved in multiple signaling pathways in MCF-7 cells. Journal of Molecular Biology 430 15311543. (https://doi.org/10.1016/j.jmb.2018.03.008)

    • Search Google Scholar
    • Export Citation
  • Mao Y, Fu A, Leaderer D, Zheng T, Chen K & Zhu Y 2013 Potential cancer-related role of circadian gene TIMELESS suggested by expression profiling and in vitro analyses. BMC Cancer 13 498. (https://doi.org/10.1186/1471-2407-13-498)

    • Search Google Scholar
    • Export Citation
  • Mazzoccoli G, Piepoli A, Carella M, Panza A, Pazienza V, Benegiamo G, Palumbo O & Ranieri E 2012 Altered expression of the clock gene machinery in kidney cancer patients. Biomedicine and Pharmacotherapy 66 175179. (https://doi.org/10.1016/j.biopha.2011.11.007)

    • Search Google Scholar
    • Export Citation
  • Mohideen-Abdul K, Tazibt K, Bourguet M, Hazemann I, Lebars I, Takacs M, Cianferani S, Klaholz BP, Moras D & Billas IML 2017 Importance of the sequence-directed DNA shape for specific binding site recognition by the estrogen-related receptor. Frontiers in Endocrinology 8 140. (https://doi.org/10.3389/fendo.2017.00140)

    • Search Google Scholar
    • Export Citation
  • Norris JD, Fan D, Sherk A & Mcdonnell DP 2002 A negative coregulator for the human ER. Molecular Endocrinology 16 459468. (https://doi.org/10.1210/mend.16.3.0787)

    • Search Google Scholar
    • Export Citation
  • Patke A, Young MW & Axelrod S 2020 Molecular mechanisms and physiological importance of circadian rhythms. Nature Reviews: Molecular Cell Biology 21 6784. (https://doi.org/10.1038/s41580-019-0179-2)

    • Search Google Scholar
    • Export Citation
  • Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J & Wittes J 1999 The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. New England Journal of Medicine 341 709717. (https://doi.org/10.1056/NEJM199909023411001)

    • Search Google Scholar
    • Export Citation
  • Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M, et al.2003 Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New England Journal of Medicine 348 13091321. (https://doi.org/10.1056/NEJMoa030207)

    • Search Google Scholar
    • Export Citation
  • Relles D, Sendecki J, Chipitsyna G, Hyslop T, Yeo CJ & Arafat HA 2013 Circadian gene expression and clinicopathologic correlates in pancreatic cancer. Journal of Gastrointestinal Surgery 17 443450. (https://doi.org/10.1007/s11605-012-2112-2)

    • Search Google Scholar
    • Export Citation
  • Robinson PM, Smith TS, Patel D, Dave M, Lewin AS, Pi L, Scott EW, Tuli SS & Schultz GS 2012 Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing. Investigative Ophthalmology and Visual Science 53 80938103. (https://doi.org/10.1167/iovs.12-10419)

    • Search Google Scholar
    • Export Citation
  • Ruan W, Yuan X & Eltzschig HK 2021 Circadian rhythm as a therapeutic target. Nature Reviews: Drug Discovery 20 287307. (https://doi.org/10.1038/s41573-020-00109-w)

    • Search Google Scholar
    • Export Citation
  • Sangoram AM, Saez L, Antoch MP, Gekakis N, Staknis D, Whiteley A, Fruechte EM, Vitaterna MH, Shimomura K, King DP, et al.1998 Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21 11011113. (https://doi.org/10.1016/s0896-6273(0080627-3)

    • Search Google Scholar
    • Export Citation
  • Shen X, Li M, Mao Z & Yu W 2018 Loss of circadian protein TIMELESS accelerates the progression of cellular senescence. Biochemical and Biophysical Research Communications 503 27842791. (https://doi.org/10.1016/j.bbrc.2018.08.040)

    • Search Google Scholar
    • Export Citation
  • Simon P, Schneck M, Hochstetter T, Koutsouki E, Mittelbronn M, Merseburger A, Weigert C, Niess A & Lang F 2007 Differential regulation of serum- and glucocorticoid-inducible kinase 1 (SGK1) splice variants based on alternative initiation of transcription. Cellular Physiology and Biochemistry 20 715728. (https://doi.org/10.1159/000110432)

    • Search Google Scholar
    • Export Citation
  • Smith-Roe SL, Patel SS, Simpson DA, Zhou YC, Rao S, Ibrahim JG, Kaiser-Rogers KA, Cordeiro-Stone M & Kaufmann WK 2011 Timeless functions independently of the Tim-Tipin complex to promote sister chromatid cohesion in normal human fibroblasts. Cell Cycle 10 16181624. (https://doi.org/10.4161/cc.10.10.15613)

    • Search Google Scholar
    • Export Citation
  • Takumi T, Nagamine Y, Miyake S, Matsubara C, Taguchi K, Takekida S, Sakakida Y, Nishikawa K, Kishimoto T, Niwa S, et al.1999 A mammalian ortholog of Drosophila timeless, highly expressed in SCN and retina, forms a complex with mPER1. Genes to Cells 4 6775. (https://doi.org/10.1046/j.1365-2443.1999.00238.x)

    • Search Google Scholar
    • Export Citation
  • Terzibasi-Tozzini E, Martinez-Nicolas A & Lucas-Sanchez A 2017 The clock is ticking. Ageing of the circadian system: from physiology to cell cycle. Seminars in Cell and Developmental Biology 70 164176. (https://doi.org/10.1016/j.semcdb.2017.06.011)

    • Search Google Scholar
    • Export Citation
  • Thakur MK & Paramanik V 2009 Role of steroid hormone coregulators in health and disease. Hormone Research 71 194200. (https://doi.org/10.1159/000201107)

    • Search Google Scholar
    • Export Citation
  • Top D & Young MW 2018 Coordination between differentially regulated circadian clocks generates rhythmic behavior. Cold Spring Harbor Perspectives in Biology 10 a033589. (https://doi.org/10.1101/cshperspect.a033589)

    • Search Google Scholar
    • Export Citation
  • Unsal-Kaçmaz K, Mullen TE, Kaufmann WK & Sancar A 2005 Coupling of human circadian and cell cycles by the timeless protein. Molecular and Cellular Biology 25 31093116. (https://doi.org/10.1128/MCB.25.8.3109-3116.2005)

    • Search Google Scholar
    • Export Citation
  • Urtishak KA, Smith KD, Chanoux RA, Greenberg RA, Johnson FB & Brown EJ 2009 Timeless maintains genomic stability and suppresses sister chromatid exchange during unperturbed DNA replication. Journal of Biological Chemistry 284 87778785. (https://doi.org/10.1074/jbc.M806103200)

    • Search Google Scholar
    • Export Citation
  • Yang D & Eliott D 2017 Systemic mineralocorticoid antagonists in the treatment of central serous chorioretinopathy. Seminars in Ophthalmology 32 3642. (https://doi.org/10.1080/08820538.2016.1228418)

    • Search Google Scholar
    • Export Citation
  • Yang J & Young MJ 2009 The mineralocorticoid receptor and its coregulators. Journal of Molecular Endocrinology 43 5364. (https://doi.org/10.1677/JME-09-0031)

    • Search Google Scholar
    • Export Citation
  • Yang J & Young MJ 2016 Mineralocorticoid receptor antagonists-pharmacodynamics and pharmacokinetic differences. Current Opinion in Pharmacology 27 7885. (https://doi.org/10.1016/j.coph.2016.02.005)

    • Search Google Scholar
    • Export Citation
  • Yang X, Wood PA & Hrushesky WJM 2010 Mammalian TIMELESS is required for ATM-dependent CHK2 activation and G2/M checkpoint control. Journal of Biological Chemistry 285 30303034. (https://doi.org/10.1074/jbc.M109.050237)

    • Search Google Scholar
    • Export Citation
  • Yang J, Chang CY, Safi R, Morgan J, Mcdonnell DP, Fuller PJ, Clyne CD & Young MJ 2011 Identification of ligand-selective peptide antagonists of the mineralocorticoid receptor using phage display. Molecular Endocrinology 25 3243. (https://doi.org/10.1210/me.2010-0193)

    • Search Google Scholar
    • Export Citation
  • Yoshizawa-Sugata N & Masai H 2007 Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint. Journal of Biological Chemistry 282 27292740. (https://doi.org/10.1074/jbc.M605596200)

    • Search Google Scholar
    • Export Citation
  • Young MJ & Clyne CD 2021 Mineralocorticoid receptor actions in cardiovascular development and disease. Essays in Biochemistry 65 901911. (https://doi.org/10.1042/EBC20210006)

    • Search Google Scholar
    • Export Citation
  • Young LM, Marzio A, Perez-Duran P, Reid DA, Meredith DN, Roberti D, Star A, Rothenberg E, Ueberheide B & Pagano M 2015 TIMELESS forms a complex with PARP1 distinct from its complex with TIPIN and plays a role in the DNA damage response. Cell Reports 13 451459. (https://doi.org/10.1016/j.celrep.2015.09.017)

    • Search Google Scholar
    • Export Citation
  • Zannad F, Mcmurray JJV, Krum H, Van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B & EMPHASIS-HF Study Group 2011 Eplerenone in patients with systolic heart failure and mild symptoms. New England Journal of Medicine 364 1121. (https://doi.org/10.1056/NEJMoa1009492)

    • Search Google Scholar
    • Export Citation
  • Ziera T, Irlbacher H, Fromm A, Latouche C, Krug SM, Fromm M, Jaisser F & & Borden SA 2009 Cnksr3 is a direct mineralocorticoid receptor target gene and plays a key role in the regulation of the epithelial sodium channel. FASEB Journal 23 39363946. (https://doi.org/10.1096/fj.09-134759)

    • Search Google Scholar
    • Export Citation
  • Zou Y, Lin X, Bu J, Lin Z, Chen Y, Qiu Y, Mo H, Tang Y, Fang W & Wu Z 2020 Timeless-stimulated miR-5188-FOXO1/beta-Catenin-c-Jun feedback loop promotes stemness via ubiquitination of beta-catenin in breast cancer. Molecular Therapy 28 313327. (https://doi.org/10.1016/j.ymthe.2019.08.015)

    • Search Google Scholar
    • Export Citation