Design and in vitro characterization of RXR variants as tools to investigate the biological role of endogenous rexinoids

in Journal of Molecular Endocrinology
Authors:
Albane le Maire CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France

Search for other papers by Albane le Maire in
Current site
Google Scholar
PubMed
Close
,
Martial Rey Institut Pasteur, Université de Paris, CNRS USR2000, Mass Spectrometry for Biology Unit, Paris, France

Search for other papers by Martial Rey in
Current site
Google Scholar
PubMed
Close
,
Valérie Vivat IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Univ Strasbourg, CNRS, Inserm, Illkirch, France

Search for other papers by Valérie Vivat in
Current site
Google Scholar
PubMed
Close
,
Laura Guée CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France

Search for other papers by Laura Guée in
Current site
Google Scholar
PubMed
Close
,
Pauline Blanc CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France

Search for other papers by Pauline Blanc in
Current site
Google Scholar
PubMed
Close
,
Christian Malosse Institut Pasteur, Université de Paris, CNRS USR2000, Mass Spectrometry for Biology Unit, Paris, France

Search for other papers by Christian Malosse in
Current site
Google Scholar
PubMed
Close
,
Julia Chamot-Rooke Institut Pasteur, Université de Paris, CNRS USR2000, Mass Spectrometry for Biology Unit, Paris, France

Search for other papers by Julia Chamot-Rooke in
Current site
Google Scholar
PubMed
Close
,
Pierre Germain CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France

Search for other papers by Pierre Germain in
Current site
Google Scholar
PubMed
Close
, and
William Bourguet CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France

Search for other papers by William Bourguet in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0643-7719

Correspondence should be addressed to P Germain or W Bourguet: germain@cbs.cnrs.fr or bourguet@cbs.cnrs.fr

(V Vivat is now at Flare Therapeutics, Cambridge, Massachusetts, USA)

Restricted access
Rent on DeepDyve

Sign up for journal news

Retinoid X receptors (RXRα, β, and γ) are essential members of the nuclear receptor (NR) superfamily of ligand-dependent transcriptional regulators that bind DNA response elements and control the expression of large gene networks. As obligate heterodimerization partners of many NRs, RXRs are involved in a variety of pathophysiological processes. However, despite this central role in NR signaling, there is still no consensus regarding the precise biological functions of RXRs and the putative role of the endogenous ligands (rexinoids) previously proposed for these receptors. Based on available crystal structures, we introduced a series of amino acid substitutions into the ligand-binding pocket of all three RXR subtypes in order to alter their binding properties. Subsequent characterization using a battery of cell-based and in vitro assays led to the identification of a double mutation abolishing the binding of any ligand while keeping the other receptor functions intact and a triple mutation that selectively impairs interaction with natural rexinoids but not with some synthetic ligands. We also report crystal structures that help understand the specific ligand-binding capabilities of both variants. These RXR variants, either fully disabled for ligand binding or retaining the property of being activated by synthetic compounds, represent unique tools that could be used in future studies to probe the presence of active endogenous rexinoids in tissues/organs and to investigate their role in vivo. Last, we provide data suggesting a possible involvement of fatty acids in the weak interaction of RXRs with corepressors.

Supplementary Materials

 

  • Collapse
  • Expand
  • Arnold SLM, Amory JK, Walsh TJ & Isoherranen N 2012 A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. Journal of Lipid Research 53 587598. (https://doi.org/10.1194/jlr.D019745)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bourguet W, Andry V, Iltis C, Klaholz B, Potier N, Van Dorsselaer A, Chambon P, Gronemeyer H & Moras D 2000a Heterodimeric complex of RAR and RXR nuclear receptor ligand-binding domains: purification, crystallization, and preliminary X-ray diffraction analysis. Protein Expression and Purification 19 284288. (https://doi.org/10.1006/prep.2000.1248)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bourguet W, Vivat V, Wurtz JM, Chambon P, Gronemeyer H & Moras D 2000b Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Molecular Cell 5 289298. (https://doi.org/10.1016/s1097-2765(0080424-4)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chandra V, Wu D, Li S, Potluri N, Kim Y & Rastinejad F 2017 The quaternary architecture of RARβ-RXRα heterodimer facilitates domain-domain signal transmission. Nature Communications 8 868. (https://doi.org/10.1038/s41467-017-00981-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dawson MI & Xia Z 2012 The retinoid X receptors and their ligands. Biochimica et Biophysica Acta 1821 2156. (https://doi.org/10.1016/j.bbalip.2011.09.014)

  • de Lera ÁR, Krezel W & Ruhl R 2016 An endogenous mammalian retinoid X receptor ligand, at last! ChemMedChem 11 10271037. (https://doi.org/10.1002/cmdc.201600105)

  • de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J & Perlmann T 2000 Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290 21402144. (https://doi.org/10.1126/science.290.5499.2140)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dominguez M, Alvarez S & de Lera AR 2017 Natural and structure-based RXR ligand scaffolds and their functions. Current Topics in Medicinal Chemistry 17 631662. (https://doi.org/10.2174/1568026616666160617072521)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Egea PF, Mitschler A, Rochel N, Ruff M, Chambon P & Moras D 2000 Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO Journal 19 25922601. (https://doi.org/10.1093/emboj/19.11.2592)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Egea PF, Mitschler A & Moras D 2002 Molecular recognition of agonist ligands by RXRs. Molecular Endocrinology 16 987997. (https://doi.org/10.1210/mend.16.5.0823)

  • Emsley P & Cowtan K 2004 Coot: model-building tools for molecular graphics. Acta Crystallographica: Section D, Biological Crystallography 60 21262132. (https://doi.org/10.1107/S0907444904019158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Evans RM & Mangelsdorf DJ 2014 Nuclear receptors, RXR, and the big bang. Cell 157 255266. (https://doi.org/10.1016/j.cell.2014.03.012)

  • Germain P, Iyer J, Zechel C & Gronemeyer H 2002 Coregulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415 187192. (https://doi.org/10.1038/415187a)

  • Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ & Gronemeyer H 2006 International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacological Reviews 58 760772. (https://doi.org/10.1124/pr.58.4.7)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilardi F & Desvergne B 2014 RXRs: collegial partners. Sub-Cellular Biochemistry 70 75102. (https://doi.org/10.1007/978-94-017-9050-5_5)

  • Goldstein JT, Dobrzyn A, Clagett-Dame M, Pike JW & DeLuca HF 2003 Isolation and characterization of unsaturated fatty acids as natural ligands for the retinoid-X receptor. Archives of Biochemistry and Biophysics 420 185193. (https://doi.org/10.1016/j.abb.2003.09.034)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harmon MA, Boehm MF, Heyman RA & Mangelsdorf DJ 1995 Activation of mammalian retinoid X receptors by the insect growth regulator methoprene. PNAS 92 61576160. (https://doi.org/10.1073/pnas.92.13.6157)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heck AJ 2008 Native mass spectrometry: a bridge between interactomics and structural biology. Nature Methods 5 927933. (https://doi.org/10.1038/nmeth.1265)

  • Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM & Thaller C 1992 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68 397406. (https://doi.org/10.1016/0092-8674(9290479-v)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu X & Lazar MA 1999 The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402 9396. (https://doi.org/10.1038/47069)

  • Hu X, Li Y & Lazar MA 2001 Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. Molecular and Cellular Biology 21 17471758. (https://doi.org/10.1128/MCB.21.5.1747-1758.2001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones JW, Pierzchalski K, Yu J & Kane MA 2015 Use of fast HPLC multiple reaction monitoring cubed for endogenous retinoic acid quantification in complex matrices. Analytical Chemistry 87 32223230. (https://doi.org/10.1021/ac504597q)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kabsch W 2010 Xds. Acta Crystallographica: Section D, Biological Crystallography 66 125132. (https://doi.org/10.1107/S0907444909047337)

  • Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch JL, Dolle P & Chambon P 1994 Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78 9871003. (https://doi.org/10.1016/0092-8674(9490274-7)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kastner P, Mark M, Leid M, Gansmuller A, Chin W, Grondona JM, Decimo D, Krezel W, Dierich A & Chambon P 1996 Abnormal spermatogenesis in RXR beta mutant mice. Genes and Development 10 8092. (https://doi.org/10.1101/gad.10.1.80)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kitareewan S, Burka LT, Tomer KB, Parker CE, Deterding LJ, Stevens RD, Forman BM, Mais DE, Heyman RA & McMorris T et al.1996 Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Molecular Biology of the Cell 7 11531166. (https://doi.org/10.1091/mbc.7.8.1153)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kojetin DJ, Matta-Camacho E, Hughes TS, Srinivasan S, Nwachukwu JC, Cavett V, Nowak J, Chalmers MJ, Marciano DP & Kamenecka TM et al.2015 Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Nature Communications 6 8013. (https://doi.org/10.1038/ncomms9013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krezel W, Ruhl R & de Lera AR 2019 Alternative retinoid X receptor (RXR) ligands. Molecular and Cellular Endocrinology 491 110436. (https://doi.org/10.1016/j.mce.2019.04.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krezel W, Rivas A, Szklenar M, Ciancia M, Alvarez R, de Lera AR & Ruhl R 2021 Vitamin A5/X, a new food to lipid hormone concept for a nutritional ligand to control RXR-mediated signaling. Nutrients 13 925. (https://doi.org/10.3390/nu13030925)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krzyzosiak A, Podlesny-Drabiniok A, Vaz B, Alvarez R, Ruhl R, de Lera AR & Krezel W 2021 Vitamin A5/X controls stress-adaptation and prevents depressive-like behaviors in a mouse model of chronic stress. Neurobiology of Stress 15 100375. (https://doi.org/10.1016/j.ynstr.2021.100375)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • le Maire A & Bourguet W 2014 Retinoic acid receptors: structural basis for coregulator interaction and exchange. Sub-Cellular Biochemistry 70 3754. (https://doi.org/10.1007/978-94-017-9050-5_3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • le Maire A, Teyssier C, Erb C, Grimaldi M, Alvarez S, de Lera AR, Balaguer P, Gronemeyer H, Royer CA & Germain P et al.2010 A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nature Structural and Molecular Biology 17 801807. (https://doi.org/10.1038/nsmb.1855)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • le Maire A, Teyssier C, Balaguer P, Bourguet W & Germain P 2019 Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and their combinations. Cells 8 1392. (https://doi.org/10.3390/cells8111392)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lengqvist J, Mata De Urquiza A, Bergman AC, Willson TM, Sjovall J, Perlmann T & Griffiths WJ 2004 Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Molecular and Cellular Proteomics 3 692703. (https://doi.org/10.1074/mcp.M400003-MCP200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen C, Rosenberger M & Lovey A 1992 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature 355 359361. (https://doi.org/10.1038/355359a0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S & McCoy AJ et al.2019 Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica: Section D, Structural Biology 75 861877. (https://doi.org/10.1107/S2059798319011471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Love JD, Gooch JT, Benko S, Li C, Nagy L, Chatterjee VK, Evans RM & Schwabe JW 2002 The structural basis for the specificity of retinoid-X receptor-selective agonists: new insights into the role of helix H12. Journal of Biological Chemistry 277 1138511391. (https://doi.org/10.1074/jbc.M110869200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mark M, Ghyselinck NB & Chambon P 2006 Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annual Review of Pharmacology and Toxicology 46 451480. (https://doi.org/10.1146/annurev.pharmtox.46.120604.141156)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mark M, Teletin M, Vernet N & Ghyselinck NB 2015 Role of retinoic acid receptor (RAR) signaling in post-natal male germ cell differentiation. Biochimica et Biophysica Acta 1849 8493. (https://doi.org/10.1016/j.bbagrm.2014.05.019)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mascrez B, Mark M, Dierich A, Ghyselinck NB, Kastner P & Chambon P 1998 The RXRalpha ligand-dependent activation function 2 (AF-2) is important for mouse development. Development 125 46914707. (https://doi.org/10.1242/dev.125.23.4691)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nahoum V, Perez E, Germain P, Rodriguez-Barrios F, Manzo F, Kammerer S, Lemaire G, Hirsch O, Royer CA & Gronemeyer H et al.2007 Modulators of the structural dynamics of the retinoid X receptor to reveal receptor function. PNAS 104 1732317328. (https://doi.org/10.1073/pnas.0705356104)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Niu H, Fujiwara H, di Martino O, Hadwiger G, Frederick TE, Menendez-Gutierrez MP, Ricote M, Bowman GR & Welch JS 2017 Endogenous retinoid X receptor ligands in mouse hematopoietic cells. Science Signaling 10 eaan1011. (https://doi.org/10.1126/scisignal.aan1011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez E, Bourguet W, Gronemeyer H & de Lera AR 2012 Modulation of RXR function through ligand design. Biochimica et Biophysica Acta 1821 5769. (https://doi.org/10.1016/j.bbalip.2011.04.003)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez Santin E, Germain P, Quillard F, Khanwalkar H, Rodriguez-Barrios F, Gronemeyer H, de Lera AR & Bourguet W 2009 Modulating retinoid X receptor with a series of (E)-3-[4-hydroxy-3-(3-alkoxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-y l)phenyl]acrylic acids and their 4-alkoxy isomers. Journal of Medicinal Chemistry 52 31503158. (https://doi.org/10.1021/jm900096q)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruhl R, Krzyzosiak A, Niewiadomska-Cimicka A, Rochel N, Szeles L, Vaz B, Wietrzych-Schindler M, Alvarez S, Szklenar M & Nagy L et al.2015 9-Cis-13,14-dihydroretinoic acid is an endogenous retinoid acting as RXR ligand in mice. PLoS Genetics 11 e1005213. (https://doi.org/10.1371/journal.pgen.1005213)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruhl R, Krezel W & de Lera AR 2018 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutrition Reviews 76 929941. (https://doi.org/10.1093/nutrit/nuy057)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schierle S & Merk D 2019 Therapeutic modulation of retinoid X receptors – SAR and therapeutic potential of RXR ligands and recent patents. Expert Opinion on Therapeutic Patents 29 605621. (https://doi.org/10.1080/13543776.2019.1643322)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shulman AI, Larson C, Mangelsdorf DJ & Ranganathan R 2004 Structural determinants of allosteric ligand activation in RXR heterodimers. Cell 116 417429. (https://doi.org/10.1016/s0092-8674(0400119-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weikum ER, Liu X & Ortlund EA 2018 The nuclear receptor superfamily: a structural perspective. Protein Science 27 18761892. (https://doi.org/10.1002/pro.3496)

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG & McCoy A et al.2011 Overview of the CCP4 suite and current developments. Acta Crystallographica: Section D, Biological Crystallography 67 235242. (https://doi.org/10.1107/S0907444910045749)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zeng Z, Sun Z, Huang M, Zhang W, Liu J, Chen L, Chen F, Zhou Y, Lin J & Huang F et al.2015 Nitrostyrene derivatives act as RXRalpha ligands to inhibit TNFalpha activation of NF-kappaB. Cancer Research 75 20492060. (https://doi.org/10.1158/0008-5472.CAN-14-2435)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Hu X & Lazar MA 1999 A novel role for helix 12 of retinoid X receptor in regulating repression. Molecular and Cellular Biology 19 64486457. (https://doi.org/10.1128/MCB.19.9.6448)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation