Liraglutide stimulates the β-catenin signaling cascade in mouse epididymal fat tissue

in Journal of Molecular Endocrinology
View More View Less
  • 1 Department of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, People’s Republic of China
  • | 2 Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
  • | 3 Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
  • | 4 Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
  • | 5 Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
  • | 6 Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada

Correspondence should be addressed to T Jin: tianru.jin@utoronto.ca

*(J Gu and W Shao contributed equally to this work)

Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Although canonical Wnt signaling pathway activation was shown to negatively regulate adipogenesis, recent investigations suggest that Wnt pathway effectors TCF7L2 and β-catenin (β-cat) in adipose tissues are also involved in energy homeostasis during adulthood. In assessing the metabolic beneficial effect of GLP-1-based diabetes drugs in high-fat diet (HFD)-challenged mice, we observed that liraglutide treatment affected the expression of a battery of adipose tissue-specific genes, including those that encode adiponectin and leptin, mainly in epididymal white adipose tissue (eWAT). Fourteen-week HFD challenge repressed TCF7L2 and β-cat S675 phosphorylation in eWAT, while such repression was reversed by liraglutide treatment (150 µg/kg body weight daily) during weeks 10–14. In Glp1r−/−mice, liraglutide failed in stimulating TCF7L2 or β-cat in eWAT. We detected Glp1r expression in mouse eWAT and its level is enriched in its stromal vascular fraction (SVF). Mouse eWAT-SVF showed reduced expression of Tcf7l2 and its Tcf7l2 level could not be stimulated by liraglutide treatment; while following adipogenic differentiation, rat eWAT-SVF showed elevated Tcf7l2 expression. Direct in vitro liraglutide treatment in eWAT-SVF stimulated CREB S133, β-cat S675 phosphorylation, and cellular cAMP level. Thus, cAMP/β-cat signaling cascade can be stimulated by liraglutide in eWAT via GLP-1R expressed in eWAT-SVF.

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1901 1901 939
Full Text Views 35 35 8
PDF Downloads 29 29 8
  • Badakhshi Y, Shao W, Liu D, Tian L, Pang J, Gu J, Hu J & Jin T 2021 Estrogen-Wnt signaling cascade regulates expression of hepatic fibroblast growth factor 21. American Journal of Physiology: Endocrinology and Metabolism 321 E292E304. (https://doi.org/10.1152/ajpendo.00638.2020)

    • Search Google Scholar
    • Export Citation
  • Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, Cappola TP, Margulies KB & Drucker DJ 2018 GLP-1 receptor expression within the human heart. Endocrinology 159 15701584. (https://doi.org/10.1210/en.2018-00004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bizino MB, Jazet IM, de Heer P, van Eyk HJ, Dekkers IA, Rensen PCN, Paiman EHM, Lamb HJ & Smit JW 2020 Placebo-controlled randomised trial with liraglutide on magnetic resonance endpoints in individuals with type 2 diabetes: a pre-specified secondary study on ectopic fat accumulation. Diabetologia 63 6574. (https://doi.org/10.1007/s00125-019-05021-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boj SF, van Es JH, Huch M, Li VS, Jose A, Hatzis P, Mokry M, Haegebarth A, van den Born M & Chambon P et al.2012 Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151 15951607. (https://doi.org/10.1016/j.cell.2012.10.053)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullock BP, Heller RS & Habener JF 1996 Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137 29682978. (https://doi.org/10.1210/endo.137.7.8770921)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campos RV, Lee YC & Drucker DJ 1994 Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134 21562164. (https://doi.org/10.1210/endo.134.5.8156917)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen ZL, Shao WJ, Xu F, Liu L, Lin BS, Wei XH, Song ZL, Lu HG, Fantus IG & Weng JP et al.2015 Acute Wnt pathway activation positively regulates leptin gene expression in mature adipocytes. Cellular Signalling 27 587597. (https://doi.org/10.1016/j.cellsig.2014.12.012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, Heikkinen S & Norton L 2018 The diabetes gene and Wnt pathway effector TCF7L2 regulates adipocyte development and function. Diabetes 67 554568. (https://doi.org/10.2337/db17-0318)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang YA, Shao W, Xu XX, Chernoff J & Jin T 2013 P21-activated protein kinase 1 (Pak1) mediates the cross talk between insulin and beta-catenin on proglucagon gene expression and its ablation affects glucose homeostasis in male C57BL/6 mice. Endocrinology 154 7788. (https://doi.org/10.1210/en.2012-1781)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva Xavier G, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, Barg S & Rutter GA 2009 TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58 894905. (https://doi.org/10.2337/db08-1187)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva Xavier G, Mondragon A, Sun G, Chen L, McGinty JA, French PM & Rutter GA 2012 Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetologia 55 26672676. (https://doi.org/10.1007/s00125-012-2600-7)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong F, Ling Q, Ye D, Zhang Z, Shu J, Chen G, Fei Y & Li C 2016 TCF7L2 involvement in estradiol- and progesterone-modulated islet and hepatic glucose homeostasis. Scientific Reports 6 24859. (https://doi.org/10.1038/srep24859)

    • Search Google Scholar
    • Export Citation
  • Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D & Diabetes Prevention Program Research Group 2006 TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. New England Journal of Medicine 355 241250. (https://doi.org/10.1056/NEJMoa062418)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V & Helgadottir A et al.2006 Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genetics 38 320323. (https://doi.org/10.1038/ng1732)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groves CJ, Zeggini E, Minton J, Frayling TM, Weedon MN, Rayner NW, Hitman GA, Walker M, Wiltshire S & Hattersley AT et al.2006 Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk. Diabetes 55 26402644. (https://doi.org/10.2337/db06-0355)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafson B & Smith U 2012 The WNT inhibitor Dickkopf 1 and bone morphogenetic protein 4 rescue adipogenesis in hypertrophic obesity in humans. Diabetes 61 12171224. (https://doi.org/10.2337/db11-1419)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hino S, Tanji C, Nakayama KI & Kikuchi A 2005 Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Molecular and Cellular Biology 25 90639072. (https://doi.org/10.1128/MCB.25.20.9063-9072.2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huertas-Vazquez A, Plaisier C, Weissglas-Volkov D, Sinsheimer J, Canizales-Quinteros S, Cruz-Bautista I, Nikkola E, Herrera-Hernandez M, Davila-Cervantes A & Tusie-Luna T et al.2008 TCF7L2 is associated with high serum triacylglycerol and differentially expressed in adipose tissue in families with familial combined hyperlipidaemia. Diabetologia 51 6269. (https://doi.org/10.1007/s00125-007-0850-6)

    • Search Google Scholar
    • Export Citation
  • Humphries SE, Gable D, Cooper JA, Ireland H, Stephens JW, Hurel SJ, Li KW, Palmen J, Miller MA & Cappuccio FP et al.2006 Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. Journal of Molecular Medicine 84 10051014. (https://doi.org/10.1007/s00109-006-0108-7)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ip W, Shao W, Song Z, Chen Z, Wheeler MB & Jin T 2015 Liver-specific expression of dominant-negative transcription factor 7-like 2 causes progressive impairment in glucose homeostasis. Diabetes 64 19231932. (https://doi.org/10.2337/db14-1329)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen CB, Pyke C, Rasch MG, Dahl AB, Knudsen LB & Secher A 2018 Characterization of the glucagonlike peptide-1 receptor in male mouse brain using a novel antibody and in situ hybridization. Endocrinology 159 665675. (https://doi.org/10.1210/en.2017-00812)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin T 2016 Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocrine Reviews 37 254277. (https://doi.org/10.1210/er.2015-1146)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin T, George Fantus I & Sun J 2008 Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cellular Signalling 20 16971704. (https://doi.org/10.1016/j.cellsig.2008.04.014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu Z & Habener JF 2008 Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. Journal of Biological Chemistry 283 87238735. (https://doi.org/10.1074/jbc.M706105200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu L, Zheng LD, Donnelly SR, Emont MP, Wu J & Cheng Z 2017 Isolation of mouse stromal vascular cells for monolayer culture. Methods in Molecular Biology 1566 916. (https://doi.org/10.1007/978-1-4939-6820-6_2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu D, Pang J, Shao W, Gu J, Zeng Y, He HH, Ling W, Qian X & Jin T 2021 Hepatic fibroblast growth factor 21 is involved in mediating functions of liraglutide in mice With dietary challenge. Hepatology 74 21542169. (https://doi.org/10.1002/hep.31856)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu D, Gu J, Shao W, Pang J, Qian X & Jin T 2022 Comparison of metabolic beneficial effects of liraglutide and semaglutide in male C57BL/6J mice. Canadian Journal of Diabetes 46 216 .e2224.e2. (https://doi.org/10.1016/j.jcjd.2021.08.012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLean BA, Wong CK, Kaur KD, Seeley RJ & Drucker DJ 2021 Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight 6 e153732. (https://doi.org/10.1172/jci.insight.153732)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mojsov S, Weir GC & Habener JF 1987 Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. Journal of Clinical Investigation 79 616619. (https://doi.org/10.1172/JCI112855)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR & Widgerow AD 2016 Stromal vascular fraction: a regenerative reality? Part 1: Current concepts and review of the literature. Journal of Plastic, Reconstructive and Aesthetic Surgery 69 170179. (https://doi.org/10.1016/j.bjps.2015.10.015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton L, Fourcaudot M, Abdul-Ghani MA, Winnier D, Mehta FF, Jenkinson CP & Defronzo RA 2011 Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia 54 31323142. (https://doi.org/10.1007/s00125-011-2289-z)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton L, Chen X, Fourcaudot M, Acharya NK, DeFronzo RA & Heikkinen S 2014 The mechanisms of genome-wide target gene regulation by TCF7L2 in liver cells. Nucleic Acids Research 42 1364613661. (https://doi.org/10.1093/nar/gku1225)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panjwani N, Mulvihill EE, Longuet C, Yusta B, Campbell JE, Brown TJ, Streutker C, Holland D, Cao X & Baggio LL et al.2013 GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE(-/-) mice. Endocrinology 154 127139. (https://doi.org/10.1210/en.2012-1937)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pastel E, Joshi S, Knight B, Liversedge N, Ward R & Kos K 2016 Effects of exendin-4 on human adipose tissue inflammation and ECM remodelling. Nutrition and Diabetes 6 e235. (https://doi.org/10.1038/nutd.2016.44)

    • Search Google Scholar
    • Export Citation
  • Prestwich TC & Macdougald OA 2007 Wnt/beta-catenin signaling in adipogenesis and metabolism. Current Opinion in Cell Biology 19 612617. (https://doi.org/10.1016/j.ceb.2007.09.014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prokunina-Olsson L, Kaplan LM, Schadt EE & Collins FS 2009 Alternative splicing of TCF7L2 gene in omental and subcutaneous adipose tissue and risk of type 2 diabetes. PLoS ONE 4 e7231. (https://doi.org/10.1371/journal.pone.0007231)

    • Search Google Scholar
    • Export Citation
  • Rasmussen IKB, Zobel EH, Ripa RS, von Scholten BJ, Curovic VR, Jensen JK, Kjaer A, Hansen TW & Rossing P 2021 Liraglutide reduces cardiac adipose tissue in type 2 diabetes: a secondary analysis of the LIRAFLAME randomized placebo-controlled trial. Diabetes, Obesity and Metabolism 23 26512659. (https://doi.org/10.1111/dom.14516)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL & MacDougald OA 2000 Inhibition of adipogenesis by Wnt signaling. Science 289 950953. (https://doi.org/10.1126/science.289.5481.950)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saxena R, Gianniny L, Burtt NP, Lyssenko V, Giuducci C, Sjogren M, Florez JC, Almgren P, Isomaa B & Orho-Melander M et al.2006 Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 55 28902895. (https://doi.org/10.2337/db06-0381)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL & Drucker DJ 1996 Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nature Medicine 2 12541258. (https://doi.org/10.1038/nm1196-1254)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao W, Szeto V, Song Z, Tian L, Feng ZP, Nostro MC & Jin T 2018 The LIM homeodomain protein ISL1 mediates the function of TCF7L2 in pancreatic beta cells. Journal of Molecular Endocrinology 61 112. (https://doi.org/10.1530/JME-17-0181)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao W, Liu W, Liang P, Song Z, Israel O, Prud’homme GJ, Wang Q & Jin T 2020 GABA requires GLP-1R to exert its pancreatic function during STZ challenge. Journal of Endocrinology 246 207222. (https://doi.org/10.1530/JOE-20-0109)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun J, Khalid S, Rozakis-Adcock M, Fantus IG & Jin T 2009 P-21-activated protein kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. Oncogene 28 31323144. (https://doi.org/10.1038/onc.2009.167)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian L, Shao W, Ip W, Song Z, Badakhshi Y & Jin T 2019 The developmental Wnt signaling pathway effector beta-catenin/TCF mediates hepatic functions of the sex hormone estradiol in regulating lipid metabolism. PLoS Biology 17 e3000444. (https://doi.org/10.1371/journal.pbio.3000444)

    • Search Google Scholar
    • Export Citation
  • van Eyk HJ, Paiman EHM, Bizino MB, de Heer P, Geelhoed-Duijvestijn PH, Kharagjitsingh AV, Smit JWA, Lamb HJ, Rensen PCN & Jazet IM 2019 A double-blind, placebo-controlled, randomised trial to assess the effect of liraglutide on ectopic fat accumulation in South Asian type 2 diabetes patients. Cardiovascular Diabetology 18 87. (https://doi.org/10.1186/s12933-019-0890-5)

    • Search Google Scholar
    • Export Citation
  • Wang A, Li T, An P, Yan W, Zheng H, Wang B & Mu Y 2017 Exendin-4 upregulates adiponectin level in adipocytes via Sirt1/Foxo-1 signaling pathway. PLoS One 12 e0169469. (https://doi.org/10.1371/journal.pone.0169469)

    • Search Google Scholar
    • Export Citation
  • Ye D, Fei Y, Ling Q, Xu W, Zhang Z, Shu J, Li C & Dong F 2016 Polymorphisms in TCF7L2 gene are associated with gestational diabetes mellitus in Chinese Han population. Scientific Reports 6 30686. (https://doi.org/10.1038/srep30686)

    • Search Google Scholar
    • Export Citation
  • Yi F, Brubaker PL & Jin T 2005 TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. Journal of Biological Chemistry 280 14571464. (https://doi.org/10.1074/jbc.M411487200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL & Jin T 2008 Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology 149 23412351. (https://doi.org/10.1210/en.2007-1142)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Welzig CM, Picard KL, Du C, Wang B, Pan JQ, Kyriakis JM, Aronovitz MJ, Claycomb WC & Blanton RM et al.2014 Glycogen synthase kinase-3beta inhibition ameliorates cardiac parasympathetic dysfunction in type 1 diabetic Akita mice. Diabetes 63 20972113. (https://doi.org/10.2337/db12-1459)

    • Crossref
    • Search Google Scholar
    • Export Citation