Insulin signaling in the heart is impaired by growth hormone: a direct and early event

in Journal of Molecular Endocrinology
Authors:
Marina C Muñoz Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Marina C Muñoz in
Current site
Google Scholar
PubMed
Close
,
Verónica G Piazza Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Verónica G Piazza in
Current site
Google Scholar
PubMed
Close
,
Valeria Burghi Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Valeria Burghi in
Current site
Google Scholar
PubMed
Close
,
Jorge F Giani Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Jorge F Giani in
Current site
Google Scholar
PubMed
Close
,
Carolina S Martinez Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Carolina S Martinez in
Current site
Google Scholar
PubMed
Close
,
Nadia S Cicconi Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Nadia S Cicconi in
Current site
Google Scholar
PubMed
Close
,
Nadia V Muia Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Nadia V Muia in
Current site
Google Scholar
PubMed
Close
,
Yimin Fang Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA

Search for other papers by Yimin Fang in
Current site
Google Scholar
PubMed
Close
,
Sergio Lavandero Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA

Search for other papers by Sergio Lavandero in
Current site
Google Scholar
PubMed
Close
,
Ana I Sotelo Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Ana I Sotelo in
Current site
Google Scholar
PubMed
Close
,
Andrzej Bartke Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA

Search for other papers by Andrzej Bartke in
Current site
Google Scholar
PubMed
Close
,
Patricia A Pennisi Centro de Investigaciones Endocrinológicas ‘Dr. César Bergadá’ (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

Search for other papers by Patricia A Pennisi in
Current site
Google Scholar
PubMed
Close
,
Fernando P Dominici Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Fernando P Dominici in
Current site
Google Scholar
PubMed
Close
, and
Johanna G Miquet Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina

Search for other papers by Johanna G Miquet in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5745-958X

Correspondence should be addressed to J G Miquet: jmiquet@qb.ffyb.uba.ar

(V Burghi is now at Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California, USA)

(J F Giani is now at Departments of Biomedical Sciences and Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA)

§(C S Martinez is now at Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina)

Restricted access
Rent on DeepDyve

Sign up for journal news

Growth hormone (GH) exerts major actions in cardiac growth and metabolism. Considering the important role of insulin in the heart and the well-established anti-insulin effects of GH, cardiac insulin resistance may play a role in the cardiopathology observed in acromegalic patients. As conditions of prolonged exposure to GH are associated with a concomitant increase of circulating GH, IGF1 and insulin levels, to dissect the direct effects of GH, in this study, we evaluated the activation of insulin signaling in the heart using four different models: (i) transgenic mice overexpressing GH, with chronically elevated GH, IGF1 and insulin circulating levels; (ii) liver IGF1-deficient mice, with chronically elevated GH and insulin but decreased IGF1 circulating levels; (iii) mice treated with GH for a short period of time; (iv) primary culture of rat cardiomyocytes incubated with GH. Despite the differences in the development of cardiomegaly and in the metabolic alterations among the three experimental mouse models analyzed, exposure to GH was consistently associated with a decreased response to acute insulin stimulation in the heart at the receptor level and through the PI3K/AKT pathway. Moreover, a blunted response to insulin stimulation of this signaling pathway was also observed in cultured cardiomyocytes of neonatal rats incubated with GH. Therefore, the key novel finding of this work is that impairment of insulin signaling in the heart is a direct and early event observed as a consequence of exposure to GH, which may play a major role in the development of cardiac pathology.

Supplementary Materials

 

  • Collapse
  • Expand
  • Abel ED, O’Shea KM & Ramasamy R 2012 Insulin resistance: metabolic mechanisms and consequences in the heart. Arteriosclerosis, Thrombosis, and Vascular Biology 32 20682076. (https://doi.org/10.1161/ATVBAHA.111.241984)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bacigalupo ML, Piazza VG, Cicconi NS, Carabias P, Bartke A, Fang Y, Sotelo AI, Rabinovich GA, Troncoso MF & Miquet JG 2019 Growth hormone upregulates the pro-tumorigenic galectin 1 in mouse liver. Endocrine Connections 8 11081117. (https://doi.org/10.1530/EC-19-0292)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bailey-Downs LC, Mitschelen M, Sosnowska D, Toth P, Pinto JT, Ballabh P, Valcarcel-Ares MN, Farley J, Koller A, Henthorn JC, et al.2012 Liver-specific knockdown of IGF-1 decreases vascular oxidative stress resistance by impairing the Nrf2-dependent antioxidant response: a novel model of vascular aging. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 67 313329. (https://doi.org/10.1093/gerona/glr164)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bartke A 2003 Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 78 210216. (https://doi.org/10.1159/000073704)

  • Bertrand L, Horman S, Beauloye C & Vanoverschelde JL 2008 Insulin signalling in the heart. Cardiovascular Research 79 238248. (https://doi.org/10.1093/cvr/cvn093)

  • Bogazzi F, Russo D, Raggi F, Ultimieri F, Urbani C, Gasperi M, Bartalena L & Martino E 2008 Transgenic mice overexpressing growth hormone (GH) have reduced or increased cardiac apoptosis through activation of multiple GH-dependent or -independent cell death pathways. Endocrinology 149 57585769. (https://doi.org/10.1210/en.2008-0346)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bogazzi F, Raggi F, Ultimieri F, Russo D, D’Alessio A, Manariti A, Brogioni S, Manetti L & Martino E 2009 Regulation of cardiac fatty acids metabolism in transgenic mice overexpressing bovine GH. Journal of Endocrinology 201 419427. (https://doi.org/10.1677/JOE-08-0194)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bohlooly-Y M, Carlson L, Olsson B, Gustafsson H, Andersson IJ, Törnell J & Bergström G 2001 Vascular function and blood pressure in GH transgenic mice. Endocrinology 142 33173323. (https://doi.org/10.1210/endo.142.8.8296)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bollano E, Omerovic E, Bohlooly-y M, Kujacic V, Madhu B, Törnell J, Isaksson O, Soussi B, Schulze W, Fu ML, et al.2000 Impairment of cardiac function and bioenergetics in adult transgenic mice overexpressing the bovine growth hormone gene. Endocrinology 141 22292235. (https://doi.org/10.1210/endo.141.6.7486)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boucher J, Kleinridders A & Kahn CR 2014 Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology 6 a009191. (https://doi.org/10.1101/cshperspect.a009191)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carter-Su C, Schwartz J & Argetsinger LS 2016 Growth hormone signaling pathways. Growth Hormone and IGF Research 28 1115. (https://doi.org/10.1016/j.ghir.2015.09.002)

  • Colao A, Grasso LFS, Di Somma C & Pivonello R 2019 Acromegaly and heart failure. Heart Failure Clinics 15 399408. (https://doi.org/10.1016/j.hfc.2019.03.001)

  • Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C, et al.2002 Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. PNAS 99 1233312338. (https://doi.org/10.1073/pnas.172376399)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Copps KD & White MF 2012 Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55 25652582. (https://doi.org/10.1007/s00125-012-2644-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • DeBosch BJ & Muslin AJ 2008 Insulin signaling pathways and cardiac growth. Journal of Molecular and Cellular Cardiology 44 855864. (https://doi.org/10.1016/j.yjmcc.2008.03.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dominici FP, Cifone D, Bartke A & Turyn D 1999a Loss of sensitivity to insulin at early events of the insulin signaling pathway in the liver of growth hormone-transgenic mice. Journal of Endocrinology 161 383392. (https://doi.org/10.1677/joe.0.1610383)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dominici FP, Cifone D, Bartke A & Turyn D 1999b Alterations in the early steps of the insulin-signaling system in skeletal muscle of GH-transgenic mice. American Journal of Physiology 277 E447E454. (https://doi.org/10.1152/ajpendo.1999.277.3.E447)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dominici FP, Argentino DP, Muñoz MC, Miquet JG, Sotelo AI & Turyn D 2005 Influence of the crosstalk between growth hormone and insulin signalling on the modulation of insulin sensitivity. Growth Hormone and IGF Research 15 324336. (https://doi.org/10.1016/j.ghir.2005.07.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernández MC, Venara M, Nowicki S, Chemes HE, Barontini M & Pennisi PA 2012 Igf-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo. Endocrinology 153 37243734. (https://doi.org/10.1210/en.2012-1107)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galic S, Sachithanandan N, Kay TW & Steinberg GR 2014 Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity. Biochemical Journal 461 177188. (https://doi.org/10.1042/BJ20140143)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gual P, Grémeaux T, Gonzalez T, Le Marchand-Brustel Y & Tanti JF 2003 MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia 46 15321542. (https://doi.org/10.1007/s00125-003-1223-4)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haeusler RA, McGraw TE & Accili D 2018 Biochemical and cellular properties of insulin receptor signalling. Nature Reviews: Molecular Cell Biology 19 3144. (https://doi.org/10.1038/nrm.2017.89)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haluzik M, Yakar S, Gavrilova O, Setser J, Boisclair Y & LeRoith D 2003 Insulin resistance in the liver-specific IGF-1 gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex: relative roles of growth hormone and IGF-1 in insulin resistance. Diabetes 52 24832489. (https://doi.org/10.2337/diabetes.52.10.2483)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Isgaard J, Arcopinto M, Karason K & Cittadini A 2015 GH and the cardiovascular system: an update on a topic at heart. Endocrine 48 2535. (https://doi.org/10.1007/s12020-014-0327-6)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim SH & Park MJ 2017 Effects of growth hormone on glucose metabolism and insulin resistance in human. Annals of Pediatric Endocrinology and Metabolism 22 145152. (https://doi.org/10.6065/apem.2017.22.3.145)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kopchick JJ, List EO, Kelder B, Gosney ES & Berryman DE 2014 Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Molecular and Cellular Endocrinology 386 3445. (https://doi.org/10.1016/j.mce.2013.09.004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Q, Ceylan-Isik AF, Li J & Ren J 2008 Deficiency of insulin-like growth factor 1 reduces sensitivity to aging-associated cardiomyocyte dysfunction. Rejuvenation Research 11 725733. (https://doi.org/10.1089/rej.2008.0717)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu JL, Yakar S & LeRoith D 2000 Mice deficient in liver production of insulin-like growth factor I display sexual dimorphism in growth hormone-stimulated postnatal growth. Endocrinology 141 44364441. (https://doi.org/10.1210/endo.141.12.7825)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • McGrane MM, de Vente J, Yun J, Bloom J, Park E, Wynshaw-Boris A, Wagner T, Rottman FM & Hanson RW 1988 Tissue-specific expression and dietary regulation of a chimeric phosphoenolpyruvate carboxykinase/bovine growth hormone gene in transgenic mice. Journal of Biological Chemistry 263 1144311451. (https://doi.org/10.1016/S0021-9258(1837977-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miquet JG, Giani JF, Martinez CS, Muñoz MC, González L, Sotelo AI, Boparai RK, Masternak MM, Bartke A, Dominici FP, et al.2011 Prolonged exposure to GH impairs insulin signaling in the heart. Journal of Molecular Endocrinology 47 167177. (https://doi.org/10.1530/JME-11-0066)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miquet JG, Freund T, Martinez CS, González L, Díaz ME, Micucci GP, Zotta E, Boparai RK, Bartke A, Turyn D, et al.2013 Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone. Cell Cycle 12 10421057. (https://doi.org/10.4161/cc.24026)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muñoz MC, Burghi V, Miquet JG, Giani JF, Banegas RD, Toblli JE, Fang Y, Wang F, Bartke A & Dominici FP 2014 Downregulation of the ACE2/Ang-(1–7)/Mas axis in transgenic mice overexpressing GH. Journal of Endocrinology 221 215227. (https://doi.org/10.1530/JOE-13-0497)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muslin AJ 2008 MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clinical Science 115 203218. (https://doi.org/10.1042/CS20070430)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mutlak M & Kehat I 2015 Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Frontiers in Pharmacology 6 149. (https://doi.org/10.3389/fphar.2015.00149)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olarescu NC & Bollerslev J 2016 The impact of adipose tissue on insulin resistance in acromegaly. Trends in Endocrinology and Metabolism 27 226237. (https://doi.org/10.1016/j.tem.2016.02.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfaffl MW 2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29 e45. (https://doi.org/10.1093/nar/29.9.e45)

  • Piazza VG, Bartke A, Miquet JG & Sotelo AI 2017 Analysis of different approaches for the selection of reference genes in RT-qPCR experiments: a case study in skeletal muscle of growing mice. International Journal of Molecular Sciences 18 1060. (https://doi.org/10.3390/ijms18051060)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prattali RR, Barreiro GC, Caliseo CT, Fugiwara FY, Ueno M, Prada PO, Velloso LA, Saad MJ & Carvalheira JB 2005 Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in growth hormone treated animals. FEBS Letters 579 31523158. (https://doi.org/10.1016/j.febslet.2005.04.075)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, White MF, Baker KM & Guo S 2013 Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes 62 38873900. (https://doi.org/10.2337/db13-0095)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Romero-Becerra R, Santamans AM, Folgueira C & Sabio G 2020 p38 MAPK pathway in the heart: new insights in health and disease. International Journal of Molecular Sciences 21 7412. (https://doi.org/10.3390/ijms21197412)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santos SH, Giani JF, Burghi V, Miquet JG, Qadri F, Braga JF, Todiras M, Kotnik K, Alenina N, Dominici FP, et al.2014 Oral administration of angiotensin-(1–7) ameliorates type 2 diabetes in rats. Journal of Molecular Medicine 92 255265. (https://doi.org/10.1007/s00109-013-1087-0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shao D & Tian R 2015 Glucose transporters in cardiac metabolism and hypertrophy. Comprehensive Physiology 6 331351. (https://doi.org/10.1002/cphy.c150016)

  • Sharma MD, Nguyen AV, Brown S & Robbins RJ 2017 Cardiovascular disease in acromegaly. Methodist Debakey CardioVascular Journal 13 6467. (https://doi.org/10.14797/mdcj-13-2-64)

  • Siddle K 2011 Signalling by insulin and IGF receptors: supporting acts and new players. Journal of Molecular Endocrinology 47 R1R10. (https://doi.org/10.1530/JME-11-0022)

  • Sotelo AI, Bartke A, Kopchick JJ, Knapp JR & Turyn D 1998 Growth hormone (GH) receptors, binding proteins and IGF-I concentrations in the serum of transgenic mice expressing bovine GH agonist or antagonist. Journal of Endocrinology 158 5359. (https://doi.org/10.1677/joe.0.1580053)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tang Z, Yu R, Lu Y, Parlow AF & Liu JL 2005 Age-dependent onset of liver-specific IGF-I gene deficiency and its persistence in old age: implications for postnatal growth and insulin resistance in LID mice. American Journal of Physiology: Endocrinology and Metabolism 289 E288E295. (https://doi.org/10.1152/ajpendo.00494.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ungvari Z & Csiszar A 2012 The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 67 599610. (https://doi.org/10.1093/gerona/gls072)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A & Speleman F 2002 Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3 RESEARCH0034. (https://doi.org/10.1186/gb-2002-3-7-research0034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vila G, Jørgensen JOL, Luger A & Stalla GK 2019 Insulin resistance in patients with acromegaly. Frontiers in Endocrinology 10 509. (https://doi.org/10.3389/fendo.2019.00509)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Welinder C & Ekblad L 2011 Coomassie staining as loading control in Western blot analysis. Journal of Proteome Research 10 14161419. (https://doi.org/10.1021/pr1011476)

  • Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B & LeRoith D 1999 Normal growth and development in the absence of hepatic insulin-like growth factor I. PNAS 96 73247329. (https://doi.org/10.1073/pnas.96.13.7324)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yakar S, Liu JL, Fernandez AM, Wu Y, Schally AV, Frystyk J, Chernausek SD, Mejia W & Le Roith D 2001 Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 50 11101118. (https://doi.org/10.2337/diabetes.50.5.1110)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yakar S, Canalis E, Sun H, Mejia W, Kawashima Y, Nasser P, Courtland HW, Williams V, Bouxsein M, Rosen C, et al.2009 Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. Journal of Bone and Mineral Research 24 14811492. (https://doi.org/10.1359/jbmr.090226)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao H, Han X & Han X 2014 The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. American Journal of Cardiovascular Drugs 14 433442. (https://doi.org/10.1007/s40256-014-0089-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yokota T & Wang Y 2016 p38 MAP kinases in the heart. Gene 575 369376. (https://doi.org/10.1016/j.gene.2015.09.030)

  • Yoneyama Y, Inamitsu T, Chida K, Iemura SI, Natsume T, Maeda T, Hakuno F & Takahashi SI 2018 Serine phosphorylation by mTORC1 promotes IRS-1 degradation through SCFβ-TRCP E3 ubiquitin ligase. iScience 5 118. (https://doi.org/10.1016/j.isci.2018.06.006)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoon MS 2017 The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients 9 1176. (https://doi.org/10.3390/nu9111176)