The AR in bone marrow progenitor cells protects against short-term high-caloric diet-induced weight gain in male mice

in Journal of Molecular Endocrinology
View More View Less
  • 1 Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
  • | 2 Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia

Correspondence should be addressed to R A Davey: r.davey@unimelb.edu.au
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

We previously identified a novel pathway of testosterone action via the androgen receptor (AR) in bone marrow mesenchymal precursor cells (BM-PCs) to negatively regulate fat mass and improve metabolic function in male mice. This was achieved using our PC-AR Gene Replacement mouse model in which the AR is only expressed in BM-PCs and deleted in all other tissues. We hypothesise that the markedly reduced fat mass and increased insulin sensitivity of PC-AR Gene Replacements will confer protection from diet-induced overweight and obesity. To test this, 6-week-old male PC-AR Gene Replacements and controls (WT, global-AR knockouts (KOs)) were fed a chow or high-caloric diet (HCD) for 8 or 18 weeks. Following 8 weeks (short-term) of HCD, WT and Global-ARKOs had markedly increased subcutaneous white adipose tissue (WAT) and retroperitoneal visceral adipose tissue (VAT) mass compared to chow-fed controls. In contrast, PC-AR Gene Replacements were resistant to WAT and VAT accumulation following short-term HCD feeding accompanied by fewer large adipocytes and upregulation of expression of the metabolic genes Acaca and Pnlpa2. Following long-term HCD feeding for 18 weeks, the PC-AR Gene Replacements were no longer resistant to increased WAT and VAT adiposity, however, maintained their improved whole-body insulin sensitivity with an increased rate of glucose disappearance and increased glucose uptake into subcutaneous WAT. In conclusion, the action of testosterone via the AR in BM-PCs to negatively regulate fat mass and improve metabolism confers resistance from short-term diet-induced weight gain and partial protection from long-term diet-induced obesity in male mice.

Supplementary Materials

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 879 879 577
Full Text Views 19 19 7
PDF Downloads 20 20 8
  • Bhasin S, Taylor WE, Singh R, Artaza J, Sinha-Hikim I, Jasuja R, Choi H & Gonzalez-Cadavid NF 2003 The mechanisms of androgen effects on body composition: mesenchymal pluripotent cell as the target of androgen action. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 58 M1103M1110. (https://doi.org/10.1093/gerona/58.12.m1103)

    • Search Google Scholar
    • Export Citation
  • Crowe AR & Yue W 2019 Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio-Protocol 9 e3465. (https://doi.org/10.21769/BioProtoc.3465)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cui XB & Chen SY 2016 White adipose tissue browning and obesity. Journal of Biomedical Research 31 12. (https://doi.org/10.7555/JBR.31.20160101)

  • Cui XB, Luan JN & Chen SY 2015 RGC-32 deficiency protects against hepatic steatosis by reducing lipogenesis. Journal of Biological Chemistry 290 2038720395. (https://doi.org/10.1074/jbc.M114.630186)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Assis-Ferreira A, Saldanha-Gama R, de Brito NM, Renovato-Martins M, Simoes RL, Barja-Fidalgo C & Vargas da Silva S 2021 Obesity enhances the recruitment of mesenchymal stem cells to visceral adipose tissue. Journal of Molecular Endocrinology 67 1526. (https://doi.org/10.1530/JME-20-0229)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Moura E Dias M, Dos Reis SA, da Conceicao LL, Sediyama CMNO, Pereira SS, de Oliveira LL, Gouveia Peluzio MDC, Martinez JA & Milagro FI 2021 Diet-induced obesity in animal models: points to consider and influence on metabolic markers. Diabetology and Metabolic Syndrome 13 32. (https://doi.org/10.1186/s13098-021-00647-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dubois V, Laurent MR, Jardi F, Antonio L, Lemaire K, Goyvaerts L, Deldicque L, Carmeliet G, Decallonne B & Vanderschueren D et al.2016 Androgen deficiency exacerbates high-fat diet-induced metabolic alterations in male mice. Endocrinology 157 648665. (https://doi.org/10.1210/en.2015-1713)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fam BC, Sgambellone R, Ruan Z, Proietto J & Andrikopoulos S 2015 Contribution of the hypothalamus and gut to weight gain susceptibility and resistance in mice. Journal of Endocrinology 225 191204. (https://doi.org/10.1530/JOE-15-0131)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, Kawano H, Kato S & Nawata H 2005 Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 54 10001008. (https://doi.org/10.2337/diabetes.54.4.1000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan X, Yao H, Liu X, Shi Q, Lv L, Li P, Wang R, Tang T & Qi K 2020 High-fat diet alters the expression of reference genes in male mice. Frontiers in Nutrition 7 589771. (https://doi.org/10.3389/fnut.2020.589771)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garcia-Ruiz E, Reynes B, Díaz-Rúa R, Ceresi E, Oliver P & Palou A 2015 The intake of high-fat diets induces the acquisition of brown adipocyte gene expression features in white adipose tissue. International Journal of Obesity 39 16191629. (https://doi.org/10.1038/ijo.2015.112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupta V, Bhasin S, Guo W, Singh R, Miki R, Chauhan P, Choong K, Tchkonia T, Lebrasseur NK & Flanagan JN et al.2008 Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Molecular and Cellular Endocrinology 296 3240. (https://doi.org/10.1016/j.mce.2008.08.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang CK, Lai KP, Luo J, Tsai MY, Kang HY, Chen Y, Lee SO & Chang C 2013 Loss of androgen receptor promotes adipogenesis but suppresses osteogenesis in bone marrow stromal cells. Stem Cell Research 11 938950. (https://doi.org/10.1016/j.scr.2013.06.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huo S, Scialli AR, McGarvey S, Hill E, Tugertimur B, Hogenmiller A, Hirsch AI & Fugh-Berman A 2016 Treatment of men for ‘low testosterone’: a systematic review. PLoS ONE 11 e0162480. (https://doi.org/10.1371/journal.pone.0162480)

    • Search Google Scholar
    • Export Citation
  • Lamont BJ, Visinoni S, Fam BC, Kebede M, Weinrich B, Papapostolou S, Massinet H, Proietto J, Favaloro J & Andrikopoulos S 2006 Expression of human fructose-1,6-bisphosphatase in the liver of transgenic mice results in increased glycerol gluconeogenesis. Endocrinology 147 27642772. (https://doi.org/10.1210/en.2005-1498)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liang W, Menke AL, Driessen A, Koek GH, Lindeman JH, Stoop R, Havekes LM, Kleemann R & van den Hoek AM 2014 Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS ONE 9 e115922. (https://doi.org/10.1371/journal.pone.0115922)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin HY, Xu Q, Yeh S, Wang RS, Sparks JD & Chang C 2005 Insulin and leptin resistance with hyperleptinemia in mice lacking androgen receptor. Diabetes 54 17171725. (https://doi.org/10.2337/diabetes.54.6.1717)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Linhart HG, Ishimura-Oka K, DeMayo F, Kibe T, Repka D, Poindexter B, Bick RJ & Darlington GJ 2001 C/EBPalpha is required for differentiation of white, but not brown, adipose tissue. PNAS 98 1253212537. (https://doi.org/10.1073/pnas.211416898)

    • Search Google Scholar
    • Export Citation
  • Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F & Miele C 2019 Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International Journal of Molecular Sciences 20 2358. (https://doi.org/10.3390/ijms20092358)

    • Search Google Scholar
    • Export Citation
  • Majka SM, Fox KE, Psilas JC, Helm KM, Childs CR, Acosta AS, Janssen RC, Friedman JE, Woessner BT & Shade TR et al.2010 De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. PNAS 107 1478114786. (https://doi.org/10.1073/pnas.1003512107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McInnes KJ, Smith LB, Hunger NI, Saunders PT, Andrew R & Walker BR 2012 Deletion of the androgen receptor in adipose tissue in male mice elevates retinol binding protein 4 and reveals independent effects on visceral fat mass and on glucose homeostasis. Diabetes 61 10721081. (https://doi.org/10.2337/db11-1136)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ng Tang Fui M, Prendergast LA, Dupuis P, Raval M, Strauss BJ, Zajac JD & Grossmann M 2016 Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial. BMC Medicine 14 153. (https://doi.org/10.1186/s12916-016-0700-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Notini AJ, Davey RA, McManus JF, Bate KL & Zajac JD 2005 Genomic actions of the androgen receptor are required for normal male sexual differentiation in a mouse model. Journal of Molecular Endocrinology 35 547555. (https://doi.org/10.1677/jme.1.01884)

    • Search Google Scholar
    • Export Citation
  • Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC & Dirnagl U et al.2020 The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Science 4 e100115. (https://doi.org/10.1136/bmjos-2020-100115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B & Nedergaard J 2010 Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. Journal of Biological Chemistry 285 71537164. (https://doi.org/10.1074/jbc.M109.053942)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rana K, Fam BC, Clarke MV, Pang TP, Zajac JD & MacLean HE 2011 Increased adiposity in DNA binding-dependent androgen receptor knockout male mice associated with decreased voluntary activity and not insulin resistance. American Journal of Physiology: Endocrinology and Metabolism 301 E767E778. (https://doi.org/10.1152/ajpendo.00584.2010)

    • Search Google Scholar
    • Export Citation
  • Russell PK, Clarke MV, Cheong K, Anderson PH, Morris HA, Wiren KM, Zajac JD & Davey RA 2015 Androgen receptor action in osteoblasts in male mice is dependent on their stage of maturation. Journal of Bone and Mineral Research 30 809823. (https://doi.org/10.1002/jbmr.2413)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Russell PK, Mangiafico S, Fam BC, Clarke MV, Marin ES, Andrikopoulos S, Wiren KM, Zajac JD & Davey RA 2018 The androgen receptor in bone marrow progenitor cells negatively regulates fat mass. Journal of Endocrinology 237 1527. (https://doi.org/10.1530/JOE-17-0656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ryden M, Uzunel M, Hard JL, Borgstrom E, Mold JE, Arner E, Mejhert N, Andersson DP, Widlund Y & Hassan M et al.2015 Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metabolism 22 408417. (https://doi.org/10.1016/j.cmet.2015.06.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Samplaski MK, Loai Y, Wong K, Lo KC, Grober ED & Jarvi KA 2014 Testosterone use in the male infertility population: prescribing patterns and effects on semen and hormonal parameters. Fertility and Sterility 101 6469. (https://doi.org/10.1016/j.fertnstert.2013.09.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S & Schmid B et al.2012 Fiji: an open-source platform for biological-image analysis. Nature Methods 9 676682. (https://doi.org/10.1038/nmeth.2019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shan Z, Rehm CD, Rogers G, Ruan M, Wang DD, Hu FB, Mozaffarian D, Zhang FF & Bhupathiraju SN 2019 Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999–2016. JAMA 322 11781187. (https://doi.org/10.1001/jama.2019.13771)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Speakman JR 2013 Measuring energy metabolism in the mouse – theoretical, practical, and analytical considerations. Frontiers in Physiology 4 34. (https://doi.org/10.3389/fphys.2013.00034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stephens AS, Stephens SR & Morrison NA 2011 Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Research Notes 4 410. (https://doi.org/10.1186/1756-0500-4-410)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tencerova M, Figeac F, Ditzel N, Taipaleenmaki H, Nielsen TK & Kassem M 2018 High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. Journal of Bone and Mineral Research 33 11541165. (https://doi.org/10.1002/jbmr.3408)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tomiyama K, Murase N, Stolz DB, Toyokawa H, O'Donnell DR, Smith DM, Dudas JR, Rubin JP & Marra KG 2008 Characterization of transplanted green fluorescent protein+ bone marrow cells into adipose tissue. Stem Cells 26 330338. (https://doi.org/10.1634/stemcells.2007-0567)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wiren KM, Zhang XW, Toombs AR, Kasparcova V, Gentile MA, Harada S & Jepsen KJ 2004 Targeted overexpression of androgen receptor in osteoblasts: unexpected complex bone phenotype in growing animals. Endocrinology 145 35073522. (https://doi.org/10.1210/en.2003-1016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wittert G, Bracken K, Robledo KP, Grossmann M, Yeap BB, Handelsman DJ, Stuckey B, Conway A, Inder W & McLachlan R et al.2021 Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet: Diabetes and Endocrinology 9 3245. (https://doi.org/10.1016/S2213-8587(2030367-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu IC, Lin HY, Liu NC, Wang RS, Sparks JD, Yeh S & Chang C 2008 Hyperleptinemia without obesity in male mice lacking androgen receptor in adipose tissue. Endocrinology 149 23612368. (https://doi.org/10.1210/en.2007-0516)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang H, Leveille M, Courty E, Gunes A, N Nguyen B & Estall JL 2020 Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease. American Journal of Physiology: Endocrinology and Metabolism 319 E863E876. (https://doi.org/10.1152/ajpendo.00321.2020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C & Luo X 2021 Endocrine role of bone in the regulation of energy metabolism. Bone Research 9 25. (https://doi.org/10.1038/s41413-021-00142-4)

    • PubMed
    • Search Google Scholar
    • Export Citation