MafA, NeuroD1, and HNF1β synergistically activate the Slc2a2 (Glut2) gene in β-cells

in Journal of Molecular Endocrinology
Authors:
Yuka Ono Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan

Search for other papers by Yuka Ono in
Current site
Google Scholar
PubMed
Close
and
Kohsuke Kataoka Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan

Search for other papers by Kohsuke Kataoka in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to K Kataoka: kkataoka@yokohama-cu.ac.jp
Restricted access
Rent on DeepDyve

Sign up for journal news

Glucose transporter type 2 (GLUT2), encoded by the SLC2A2 gene, is an essential component of glucose-stimulated insulin secretion in pancreatic islet β-cells. Like that of the gene encoding insulin, expression of the SLC2A2 gene expression is closely linked to β-cell functionality in rodents, but the mechanism by which β-cell-specific expression of SLC2A2 is controlled remains unclear. In this report, to identify putative enhancer elements of the mouse Slc2a2 gene, we examined evolutional conservation of the nucleotide sequence of its genomic locus, together with ChIP-seq data of histone modifications and various transcription factors published in previous studies. Using luciferase reporter assays, we found that an evolutionarily conserved region (ECR) located approximately 40 kbp downstream of the transcription start site of Slc2a2 functions as an active enhancer in the MIN6 β-cell line. We also found that three β-cell-enriched transcription factors, MafA, NeuroD1, and HNF1β, synergistically activate transcription through this 3’ downstream distal enhancer (ECR3’) and the proximal promoter region of the gene. Our data also indicate that the simultaneous binding of HNF1β to its target sites within the promoter and ECR3’ of Slc2a2 is indispensable for transcriptional activation, and that binding of MafA and NeuroD1 to their respective target sites within the ECR3’ enhances transcription. Co-immunoprecipitation experiments suggested that MafA, NeuroD1, and HNF1β interact with each other. Overall, these results suggest that promoter-enhancer communication through MafA, NeuroD1, and HNF1β is critical for Slc2a2 gene expression. These findings provide clues to help elucidate the mechanism of regulation of Slc2a2 gene expression in β-cells.

 

  • Collapse
  • Expand
  • Ahlgren U, Jonsson J, Jonsson L, Simu K & Edlund H 1998 β-Cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes and Development 12 17631768. (https://doi.org/10.1101/gad.12.12.1763)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ando K, Shioda S, Handa H & Kataoka K 2003 Isolation and characterization of an alternatively spliced variant of transcription factor Islet-1. Journal of Molecular Endocrinology 31 419425. (https://doi.org/10.1677/jme.0.0310419)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aramata S, Han SI, Yasuda K & Kataoka K 2005 Synergistic activation of the insulin gene promoter by the β-cell enriched transcription factors MafA, Beta2, and Pdx1. Biochimica et Biophysica Acta 1730 4146. (https://doi.org/10.1016/j.bbaexp.2005.05.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, Magnuson MA & Stein R 2010 MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes 59 25302539. (https://doi.org/10.2337/db10-0190)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ban N, Yamada Y, Someya Y, Miyawaki K, Ihara Y, Hosokawa M, Toyokuni S, Tsuda K & Seino Y 2002 Hepatocyte nuclear factor-1α recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes 51 14091418. (https://doi.org/10.2337/diabetes.51.5.1409)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bernardo AS, Hay CW & Docherty K 2008 Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic β cell. Molecular and Cellular Endocrinology 294 19. (https://doi.org/10.1016/j.mce.2008.07.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cha JY, Kim HIl, Kim KS, Hur MW & Ahn YH 2000 Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene: cooperative role of hepatocyte nuclear factors 1α and 3β. Journal of Biological Chemistry 275 1835818365. (https://doi.org/10.1074/jbc.M909536199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen YJ, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, Yang C, Maehr R, Zhou Q & Shemer R et al. 2014 De novo formation of insulin-producing ‘neo-β cell islets’ from intestinal crypts. Cell Reports 6 10461058. (https://doi.org/10.1016/j.celrep.2014.02.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chouard T, Blumenfeld M, Bach I, Vandekerckhove J, Cereghini S & Yaniv M 1990 A distal dimerization domain is essential for DNA-binding by the atypical HNF1 homeodomain. Nucleic Acids Research 18 58535863. (https://doi.org/10.1093/nar/18.19.5853)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Docherty HM, Hay CW, Ferguson LA, Barrow J, Durward E & Docherty K 2005 Relative contribution of PDX-1, MafA and E47/β2 to the regulation of the human insulin promoter. Biochemical Journal 389 813820. (https://doi.org/10.1042/BJ20041891)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ediger BN, Du A, Liu J, Hunter CS, Walp ER, Schug J, Kaestner KH, Stein R, Stoffers DA & May CL 2014 Islet-1 is essential for pancreatic β-cell function. Diabetes 63 42064217. (https://doi.org/10.2337/db14-0096)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fujitani Y, Fujitani S, Boyer DF, Gannon M, Kawaguchi Y, Ray M, Shiota M, Stein RW, Magnuson MA & Wright CVE 2006 Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes and Development 20 253266. (https://doi.org/10.1101/gad.1360106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, Vethe H, Paulo JA, Joosten AM & Berney T et al. 2019 Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567 4348. (https://doi.org/10.1038/s41586-019-0942-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu C, Stein GH, Pan N, Goebbels S, Hörnberg H, Nave KA, Herrera P, White P, Kaestner KH & Sussel L et al. 2010 Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metabolism 11 298310. (https://doi.org/10.1016/j.cmet.2010.03.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gutiérrez GD, Bender AS, Cirulli V, Mastracci TL, Kelly SM, Tsirigos A, Kaestner KH & Sussel L 2017 Pancreatic β cell identity requires continual repression of non-β cell programs. Journal of Clinical Investigation 127 244259. (https://doi.org/10.1172/JCI88017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han SI, Aramata S, Yasuda K & Kataoka K 2007 MafA stability in pancreatic β-cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Molecular and Cellular Biology 27 65936605. (https://doi.org/10.1128/MCB.01573-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han SI, Yasuda K & Kataoka K 2011 ATF2 interacts with β-cell-enriched transcription factors, MafA, Pdx1, and Beta2, and activates insulin gene transcription. Journal of Biological Chemistry 286 1044910456. (https://doi.org/10.1074/jbc.M110.209510)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han SI, Tsunekage Y & Kataoka K 2016 Phosphorylation of MafA enhances interaction with Beta2/NeuroD1. Acta Diabetologica 53 651660. (https://doi.org/10.1007/s00592-016-0853-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoffman BG, Robertson G, Zavaglia B, Beach M, Cullum R, Lee S, Soukhatcheva G, Li L, Wederell ED & Thiessen N et al. 2010 Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. Genome Research 20 10371051. (https://doi.org/10.1101/gr.104356.109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M & Tomonaga O et al. 1997 Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nature Genetics 17 384385. (https://doi.org/10.1038/ng1297-384)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jia S, Ivanov A, Blasevic D, Müller T, Purfürst B, Sun W, Chen W, Poy MN, Rajewsky N & Birchmeier C 2015 Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β‐cell function. EMBO Journal 34 14171433. (https://doi.org/10.15252/embj.201490819)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaneto H, Matsuoka TA, Nakatani Y, Miyatsuka T, Matsuhisa M, Hori M & Yamasaki Y 2005 A crucial role of MafA as a novel therapeutic target for diabetes. Journal of Biological Chemistry 280 1504715052. (https://doi.org/10.1074/jbc.M412013200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Yoshitomo-Nakagawa K, Shioda S & Nishizawa M 2001 A set of Hox proteins interact with the Maf oncoprotein to inhibit its DNA binding, transactivation, and transforming activities. Journal of Biological Chemistry 276 819826. (https://doi.org/10.1074/jbc.M007643200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kataoka K, Han SI, Shioda S, Hirai M, Nishizawa M & Handa H 2002 MafA is a glucose-regulated and pancreatic β-cell-specific transcriptional activator for the insulin gene. Journal of Biological Chemistry 277 4990349910. (https://doi.org/10.1074/jbc.M206796200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu TTH, Heyne S, Dror E, Casas E, Leonhardt L, Boenke T, Yang CH, Sagar AL, Arrigoni L & Dalgaard K et al. 2018 The polycomb-dependent epigenome controls β cell dysfunction, dedifferentiation, and diabetes. Cell Metabolism 27 1294 .e71308.e7. (https://doi.org/10.1016/j.cmet.2018.04.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, Saad M, Warram JH, Montminy M & Krolewski AS 1999 Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genetics 23 323328. (https://doi.org/10.1038/15500)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendel DB, Hansen LP, Graves MK, Conley PB & Crabtree GR 1991 HNF-1α and HNF-1β (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes and Development 5 10421056. (https://doi.org/10.1101/gad.5.6.1042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miyazaki JI, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y & Yamamura KI 1990 Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127 126132. (https://doi.org/10.1210/endo-127-1-126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB & Tsai MJ 1997 Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes and Development 11 23232334. (https://doi.org/10.1101/gad.11.18.2323)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S & Sharma A 2006 A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Developmental Biology 293 526539. (https://doi.org/10.1016/j.ydbio.2006.02.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Onishi S & Kataoka K 2019 PIASy is a SUMOylation-independent negative regulator of the insulin transactivator MafA. Journal of Molecular Endocrinology 63 297308. (https://doi.org/10.1530/JME-19-0172)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Servitja J-M, Pignatelli M, Maestro , Cardalda C, Boj SF, Lozano J, Blanco E, Lafuente A, McCarthy MI & Sumoy L et al. 2009 Hnf1α (MODY3) controls tissue-specific transcriptional programs and exerts opposed effects on cell growth in pancreatic islets and liver. Molecular and Cellular Biology 29 29 452959. (https://doi.org/10.1128/mcb.01389-08)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stoffers DA, Stanojevic V & Habener JF 1998 Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein. Journal of Clinical Investigation 102 232241. (https://doi.org/10.1172/JCI2242)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Swisa A, Avrahami D, Eden N, Zhang J, Feleke E, Dahan T, Cohen-Tayar Y, Stolovich-Rain M, Kaestner KH & Glaser B et al. 2017 PAX6 maintains β cell identity by repressing genes of alternative islet cell types. Journal of Clinical Investigation 127 230243. (https://doi.org/10.1172/JCI88015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor BL, Liu FF & Sander M 2013 Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Reports 4 12621275. (https://doi.org/10.1016/j.celrep.2013.08.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tennant BR, Robertson AG, Kramer M, Li L, Zhang X, Beach M, Thiessen N, Chiu R, Mungall K & Whiting CJ et al. 2013 Identification and analysis of murine pancreatic islet enhancers. Diabetologia 56 542552. (https://doi.org/10.1007/s00125-012-2797-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorens B, Sarkar HK, Kaback HR & Lodish HF 1988 Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells. Cell 55 281290. (https://doi.org/10.1016/0092-8674(8890051-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uchida S, Watanabe S, Aizawa T, Furuno A & Muto T 1979 Polyoncogenicity and insulinoma-inducing ability of BK virus, a human papovavirus, in Syrian golden hamsters. Journal of the National Cancer Institute 63 119126. (https://doi.org/10.1093/jnci/63.1.119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waeber G, Thompson N, Nicod P & Bonny C 1996 Transcriptional activation of the GLUT2 gene by the Ipf-1/STF-1/IDX-1 homeobox factor. Molecular Endocrinology 10 13271334. (https://doi.org/10.1210/mend.10.11.8923459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Maechler P, Ritz-Laser B, Hagenfeldt KA, Ishihara H, Philippe J & Wollheim CB 2001 Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. Journal of Biological Chemistry 276 2527925286. (https://doi.org/10.1074/jbc.M101233200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang H, Brun T, Kataoka K, Sharma AJ & Wollheim CB 2007 MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia 50 348358. (https://doi.org/10.1007/s00125-006-0490-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilson ME, Scheel D & German MS 2003 Gene expression cascades in pancreatic development. Mechanisms of Development 120 6580. (https://doi.org/10.1016/S0925-4773(0200333-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM & Boriraj VV et al. 1996 Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 384 455458. (https://doi.org/10.1038/384455a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamato E, Tashiro F & Miyazaki J 2013 Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β cell line MIN6. PLoS ONE 8 e61211. (https://doi.org/10.1371/journal.pone.0061211)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang C, Moriguchi T, Kajihara M, Harada A, Shimohata H, Oishi H, Hamada M, Morito N, Hasegawa K & Kudo T et al. 2005 MafA is a key regulator of glucose-stimulated insulin secretion. Molecular and Cellular Biology 25 49694976. (https://doi.org/10.1128/MCB.25.12.4969)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao L, Guo M, Matsuoka TA, Hagman DK, Parazzoli SD, Poitout V & Stein R 2005 The islet β cell-enriched MafA activator is a key regulator of insulin gene transcription. Journal of Biological Chemistry 280 1188711894. (https://doi.org/10.1074/jbc.M409475200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou Q, Brown J, Kanarek A, Rajagopal J & Melton DA 2008 In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455 627632. (https://doi.org/10.1038/nature07314)

    • PubMed
    • Search Google Scholar
    • Export Citation