Role of AMPK in the protective effects exerted by triiodothyronine in ischemic-reperfused myocardium

in Journal of Molecular Endocrinology
View More View Less
  • 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Buenos Aires, Argentina
  • 2 CONICET – Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina

Correspondence should be addressed to R Hermann: rhermann@ffyb.uba.ar
Restricted access

Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular ‘fuel-gauge’ enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion. Results showed that T3 increased AMPK activation during simulated ischemia-reperfusion, while compound C prevented it. At the end of simulated reperfusion, acute T3 treatment increased contractile function recovery and cellular viability conservation. Mitochondrial ultrastructure was better preserved in the presence of T3 as well as mitochondrial ATP production rate and tissue ATP content. Calcium retention capacity, a parameter widely used as an indicator of the resistance of mitochondrial permeability transition pore (MPTP) to opening, and GSK-3β phosphorylation, a master switch enzyme that limits MPTP opening, were increased by T3 administration. All these beneficial effects exerted by T3 acute treatment were prevented when compound C was co-administrated. The present study provided original evidence that T3 enhances intrinsic activation of AMPK during myocardial ischemia-reperfusion, being this enzyme involved, at least in part, in the protective effects exerted by T3, contributing to mitochondrial structure and function preservation, post-ischemic contractile recovery and conservation of cellular viability.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 27 27 27
Full Text Views 5 5 5
PDF Downloads 5 5 5
  • Accorroni A, Saponaro F & Zucchi R 2016 Tissue thyroid hormones and thyronamines. Heart Failure Reviews 21 373390. (https://doi.org/10.1007/s10741-016-9553-8)

    • Search Google Scholar
    • Export Citation
  • Branvold DJ, Allred DR, Beckstead DJ, Kim HJ, Fillmore N, Condon BM, Brown JD, Sudweeks SN, Thomson DM & Winder WW 2008 Thyroid hormone effects on LKB1, MO25, phospho-AMPK, phospho-CREB, and PGC-1α in rat muscle. Journal of Applied Physiology 105 12181227. (https://doi.org/10.1152/japplphysiol.00997.2007)

    • Search Google Scholar
    • Export Citation
  • Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q & Gerdes AM 2008 Short term triiodo-l-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. Journal of Molecular and Cellular Cardiology 44 180187. (https://doi.org/10.1016/j.yjmcc.2007.09.009)

    • Search Google Scholar
    • Export Citation
  • Chen X, Hu Y, Jiang T, Xia C, Wang Y & Gao Y 2020 Triiodothyronine potentiates BMP9-induced osteogenesis in mesenchymal stem cells through the activation of AMPK/p38 signaling. Frontiers in Cell and Developmental Biology 8 725. (https://doi.org/10.3389/fcell.2020.00725)

    • Search Google Scholar
    • Export Citation
  • De Lange P, Senese R, Cioffi F, Moreno M, Lombardi A, Silvestri E, Goglia F & Lanni A 2008 Rapid activation by 3,5,3-L-triiodothyronine of adenosine 5-monophosphate-activated protein kinase/acetyl-coenzyme A carboxylase and Akt/protein kinase B signaling pathways: relation to changes in fuel metabolism and myosin heavy-chain protein content in rat gastrocnemius muscle in vivo. Endocrinology 149 64626470. (https://doi.org/10.1210/en.2008-0202)

    • Search Google Scholar
    • Export Citation
  • De Paulis D, Chiari P, Teixeira G, Couture-Lepetit E, Abrial M, Argaud L, Gharib A & Ovize M 2013 Cyclosporine A at reperfusion fails to reduce infarct size in the in vivo rat heart. Basic Research in Cardiology 108 379. (https://doi.org/10.1007/s00395-013-0379-4)

    • Search Google Scholar
    • Export Citation
  • Di Lisa F, Semenzato M, Carpi A, Menazza S, Kaludercic N, Menabò R & Canton M 2010 Mitochondrial dysfunction in cell injury and cardiotoxicity. In Cardiotoxicity of Non-Cardiovascular Drugs, pp. 123. Chichester, UK: John Wiley & Sons, Ltd. (https://doi.org/10.1002/9780470660379.ch1)

    • Search Google Scholar
    • Export Citation
  • Fang L, Xu Z, Lu J, Hong L, Qiao S, Liu L & An J 2019 Cardioprotective effects of triiodothyronine supplementation against ischemia reperfusion injury by preserving calcium cycling proteins in isolated rat hearts. Experimental and Therapeutic Medicine 18 49354941. (https://doi.org/10.3892/etm.2019.8114)

    • Search Google Scholar
    • Export Citation
  • Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, Iervasi G & Pitto L 2014 Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology 155 45814590. (https://doi.org/10.1210/en.2014-1106)

    • Search Google Scholar
    • Export Citation
  • Friberg L, Drvota V, Bjelak AH, Eggertsen G & Ahnve S 2001 Association between increased levels of reverse triiodothyronine and mortality after acute myocardial infarction. American Journal of Medicine 111 699703. (https://doi.org/10.1016/s0002-9343(0100980-9)

    • Search Google Scholar
    • Export Citation
  • Halestrap AP 2009 What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology 46 821831. (https://doi.org/10.1016/j.yjmcc.2009.02.021)

    • Search Google Scholar
    • Export Citation
  • Halestrap AP & Richardson AP 2015 The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology 78 129141. (https://doi.org/10.1016/j.yjmcc.2014.08.018)

    • Search Google Scholar
    • Export Citation
  • Halestrap AP, Pereira GC & Pasdois P 2015 The role of hexokinase in cardioprotection – mechanism and potential for translation. British Journal of Pharmacology 172 20852100. (https://doi.org/10.1111/bph.12899)

    • Search Google Scholar
    • Export Citation
  • Hardie DG 2010 Hot stuff: thyroid hormones and AMPK. Cell Research 20 12821284. (https://doi.org/10.1038/cr.2010.153)

  • Hardie DG, Ross FA & Hawley SA 2012 AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews: Molecular Cell Biology 13 251262. (https://doi.org/10.1038/nrm3311)

    • Search Google Scholar
    • Export Citation
  • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D & Hardie DG 1996 Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. Journal of Biological Chemistry 271 2787927887. (https://doi.org/10.1074/jbc.271.44.27879)

    • Search Google Scholar
    • Export Citation
  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR & Hardie DG 2003 Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of Biology 2 28. (https://doi.org/10.1186/1475-4924-2-28)

    • Search Google Scholar
    • Export Citation
  • Hermann R, Vélez DE, Rusiecki TM, Fernández Pazos MdeL, Mestre Cordero VE, Marina Prendes MG, Perazzo Rossini JC, Savino EA & Varela A 2015 Effects of 3-methyladenine on isolated left atria subjected to simulated ischaemia-reperfusion. Clinical and Experimental Pharmacology and Physiology 42 4151. (https://doi.org/10.1111/1440-1681.12323)

    • Search Google Scholar
    • Export Citation
  • Hermann R, Mestre Cordero VE, Fernández Pazos MLM, Reznik FJ, Vélez DE, Savino EA, Marina Prendes MG & Varela A 2018 Differential effects of AMP-activated protein kinase in isolated rat atria subjected to simulated ischemia–reperfusion depending on the energetic substrates available. Pflugers Archiv 470 367383. (https://doi.org/10.1007/s00424-017-2075-y)

    • Search Google Scholar
    • Export Citation
  • Irrcher I, Walkinshaw DR, Sheehan TE & Hood DA 2008 Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. Journal of Applied Physiology 104 178185. (https://doi.org/10.1152/japplphysiol.00643.2007)

    • Search Google Scholar
    • Export Citation
  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K & Antos CL et al. 2004 Glycogen synthase kinase-3β mediates convergence of protection signalling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation 113 15351549. (https://doi.org/10.1172/JCI19906)

    • Search Google Scholar
    • Export Citation
  • Kaptein EM, Sanchez A, Beale E & Chan LS 2010 Clinical review: thyroid hormone therapy for postoperative nonthyroidal illnesses: a systematic review and synthesis. Journal of Clinical Endocrinology and Metabolism 95 45264534. (https://doi.org/10.1210/jc.2010-1052)

    • Search Google Scholar
    • Export Citation
  • Kloner RA 2013 Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circulation Research 113 451463. (https://doi.org/10.1161/CIRCRESAHA.112.300627)

    • Search Google Scholar
    • Export Citation
  • Kolocassides KG, Seymour AM, Galinanes M & Hearse DJ 1996 Paradoxical effect of ischemic preconditioning on ischemic contracture? NMR studies of energy metabolism and intracellular pH in the rat heart. Journal of Molecular and Cellular Cardiology 28 10451057. (https://doi.org/10.1006/jmcc.1996.0097)

    • Search Google Scholar
    • Export Citation
  • Li L, Guo CY, Yang J, Jia EZ, Zhu TB, Wang LS, Cao KJ, Ma WZ & Yang ZJ 2011 Negative association between free triiodothyronine level and international normalized ratio in euthyroid subjects with acute myocardial infarction. Acta Pharmacologica Sinica 32 13511356. (https://doi.org/10.1038/aps.2011.118)

    • Search Google Scholar
    • Export Citation
  • Liu Q, Clanachan AS & Lopaschuk GD 1998 Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. American Journal of Physiology 275 E392E399. (https://doi.org/10.1152/ajpendo.1998.275.3.E392)

    • Search Google Scholar
    • Export Citation
  • López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K & Lage R et al. 2010 Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine 16 10011008. (https://doi.org/10.1038/nm.2207)

    • Search Google Scholar
    • Export Citation
  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ 1951 Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193 265275. (https://doi.org/10.1016/0304-3894(9287011-4)

    • Search Google Scholar
    • Export Citation
  • Mourouzis I, Giagourta I, Galanopoulos G, Mantzouratou P, Kostakou E, Kokkinos AD, Tentolouris N & Pantos C 2013 Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: a response associated with up-regulation of Akt/mTOR and AMPK activation. Metabolism: Clinical and Experimental 62 13871393. (https://doi.org/10.1016/j.metabol.2013.05.008)

    • Search Google Scholar
    • Export Citation
  • Murphy E & Steenbergen C 2007 Preconditioning: the mitochondrial connection. Annual Review of Physiology 69 5167. (https://doi.org/10.1146/annurev.physiol.69.031905.163645)

    • Search Google Scholar
    • Export Citation
  • Nicolini G, Forini F, Kusmic C, Pitto L, Mariani L & Iervasi G 2016 Early and short-term triiodothyronine supplementation prevents adverse postischemic cardiac remodeling: role of transforming growth factor-β1 and antifibrotic miRNA signaling. Molecular Medicine 21 900911. (https://doi.org/10.2119/molmed.2015.00140)

    • Search Google Scholar
    • Export Citation
  • Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, Ohori K, Hotta H, Terashima Y & Shimamoto K 2007 Modulation of the mitochondrial permeability transition pore complex in GSK-3β-mediated myocardial protection. Journal of Molecular and Cellular Cardiology 43 564570. (https://doi.org/10.1016/j.yjmcc.2007.08.010)

    • Search Google Scholar
    • Export Citation
  • Novitzky D & Cooper DKC 2014 Thyroid hormone and the stunned myocardium. Journal of Endocrinology 223 R1R8. (https://doi.org/10.1530/JOE-14-0389)

    • Search Google Scholar
    • Export Citation
  • Obame FN, Plin-Mercier C, Assaly R, Zini R, Dubois-Randé JL, Berdeaux A & Morin D 2008 Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3β, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione], via inhibition of the mitochondrial permeability transition pore. Journal of Pharmacology and Experimental Therapeutics 326 252258. (https://doi.org/10.1124/jpet.108.138008)

    • Search Google Scholar
    • Export Citation
  • Ojamaa K, Kenessey A, Shenoy R & Klein I 2000 Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. American Journal of Physiology: Endocrinology and Metabolism 279 E1319E1324. (https://doi.org/10.1152/ajpendo.2000.279.6.E1319)

    • Search Google Scholar
    • Export Citation
  • Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM & Mocanu MM 2011 Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. American Journal of Physiology: Heart and Circulatory Physiology 300 H2123H2134. (https://doi.org/10.1152/ajpheart.00707.2010)

    • Search Google Scholar
    • Export Citation
  • Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P & Spanou D et al. 2009 Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Research in Cardiology 104 6977. (https://doi.org/10.1007/s00395-008-0758-4)

    • Search Google Scholar
    • Export Citation
  • Pantos C, Mourouzis I, Saranteas T, Brozou V, Galanopoulos G, Kostopanagiotou G & Cokkinos DV 2011 Acute T3 treatment protects the heart against ischemia-reperfusion injury via TRα1 receptor. Molecular and Cellular Biochemistry 353 235241. (https://doi.org/10.1007/s11010-011-0791-8)

    • Search Google Scholar
    • Export Citation
  • Pardo AC, Rinaldi GJ & Mosca SM 2015 Mitochondrial calcium handling in normotensive and spontaneously hypertensive rats: correlation with systolic blood pressure levels. Mitochondrion 20 7581. (https://doi.org/10.1016/j.mito.2014.12.003)

    • Search Google Scholar
    • Export Citation
  • Park SH, Paulsen SR, Gammon SR, Mustard KJ, Hardie DG & Winder WW 2002 Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle. Journal of Applied Physiology 93 20812088. (https://doi.org/10.1152/japplphysiol.00504.2002)

    • Search Google Scholar
    • Export Citation
  • Pingitore A, Chen Y, Gerdes AM & Iervasi G 2012 Acute myocardial infarction and thyroid function: new pathophysiological and therapeutic perspectives. Annals of Medicine 44 745757. (https://doi.org/10.3109/07853890.2011.573501)

    • Search Google Scholar
    • Export Citation
  • Pingitore A, Nicolini G, Kusmic C, Iervasi G, Grigolini P & Forini F 2016 Cardioprotection and thyroid hormones. Heart Failure Reviews 21 391399. (https://doi.org/10.1007/s10741-016-9545-8)

    • Search Google Scholar
    • Export Citation
  • Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E & Angoulvant D et al. 2008 Effect of cyclosporine on reperfusion injury in acute myocardial infarction. New England Journal of Medicine 359 473481. (https://doi.org/10.1056/NEJMoa071142)

    • Search Google Scholar
    • Export Citation
  • Ragone MI, Bonazzola P, Colareda GA & Consolini AE 2015 Cardioprotective effect of hyperthyroidism on the stunned rat heart during ischaemia-reperfusion: energetics and role of mitochondria. Experimental Physiology 100 680697. (https://doi.org/10.1113/EP085063)

    • Search Google Scholar
    • Export Citation
  • Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW & Rooney SJ et al. 2006 Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114 (Supplement) I245I250. (https://doi.org/10.1161/CIRCULATIONAHA.105.000786)

    • Search Google Scholar
    • Export Citation
  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA & Cantley LC 2004 The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. PNAS 101 33293335. (https://doi.org/10.1073/pnas.0308061100)

    • Search Google Scholar
    • Export Citation
  • Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, Lesmana R, Gooding J, Bay BH & Yen PM 2015 Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPKULK1 signaling. Autophagy 11 13411357. (https://doi.org/10.1080/15548627.2015.1061849)

    • Search Google Scholar
    • Export Citation
  • Solaini G & Harris DA 2005 Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochemical Journal 390 377394. (https://doi.org/10.1042/BJ20042006)

    • Search Google Scholar
    • Export Citation
  • Solem LE & Wallace KB 1993 Selective activation of the sodium-independent, cyclosporine A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicology and Applied Pharmacology 121 5057. (https://doi.org/10.1006/taap.1993.1128)

    • Search Google Scholar
    • Export Citation
  • Sugden PH, Fuller SJ, Weiss SC & Clerk A 2008 Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. British Journal of Pharmacology 153 (Supplement 1) S137S153. (https://doi.org/10.1038/sj.bjp.0707659)

    • Search Google Scholar
    • Export Citation
  • Takano APC, Diniz GP & Barreto-Chaves ML 2013 AMPK signaling pathway is rapidly activated by T3 and regulates the cardiomyocyte growth. Molecular and Cellular Endocrinology 376 4350. (https://doi.org/10.1016/j.mce.2013.05.024)

    • Search Google Scholar
    • Export Citation
  • Tian X, Zhou Y, Wang Y, Zhang S, Feng J, Wang X, Guo H, Fan R, Feng N & Jia M et al. 2019 Mitochondrial dysfunction and apoptosis are attenuated on-opioid receptor activation through AMPK/GSK-3β pathway after myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology 73 7081. (https://doi.org/10.1097/FJC.0000000000000635)

    • Search Google Scholar
    • Export Citation
  • Vargas R, Ortega Y, Bozo V, Andrade M, Minuzzi G, Cornejo P, Fernandez V & Videla LA 2013 Thyroid hormone activates rat liver adenosine 5-monophosphate-activated protein kinase: relation to CaMKKβ, TAK1, and LKB1 expression and energy status. Journal of Biological Regulators and Homeostatic Agents 27 989999.

    • Search Google Scholar
    • Export Citation
  • Videla LA, Fernández V, Cornejo P, Vargas R, Morales P, Ceballo J, Fischer A, Escudero N & Escobar O 2014 T3-induced liver AMP-activated protein kinase signaling: redox dependency and upregulation of downstream targets. World Journal of Gastroenterology 20 1741617425. (https://doi.org/10.3748/wjg.v20.i46.17416)

    • Search Google Scholar
    • Export Citation
  • Wang CZ, Wei D, Guan MP & Xue YM 2014 Triiodothyronine regulates distribution of thyroid hormone receptors by activating AMP-activated protein kinase in 3T3-L1 adipocytes and induces uncoupling protein-1 expression. Molecular and Cellular Biochemistry 393 247254. (https://doi.org/10.1007/s11010-014-2067-6)

    • Search Google Scholar
    • Export Citation
  • Yamauchi M, Kambe F, Cao X, Lu X, Kozaki Y, Oiso Y & Seo H 2008 Thyroid hormone activates adenosine 5-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase. Molecular Endocrinology 22 893903. (https://doi.org/10.1210/me.2007-0249)

    • Search Google Scholar
    • Export Citation
  • Zaha VG & Young LH 2012 AMP-activated protein kinase regulation and biological actions in the heart. Circulation Research 111 800814. (https://doi.org/10.1161/CIRCRESAHA.111.255505)

    • Search Google Scholar
    • Export Citation
  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T & Fujii N et al. 2001 Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation 108 11671174. (https://doi.org/10.1172/JCI13505)

    • Search Google Scholar
    • Export Citation
  • Zinman T, Shneyvays V, Tribulova N, Manoach M & Shainberg A 2006 Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. Journal of Cellular Physiology 207 220231. (https://doi.org/10.1002/jcp.20562)

    • Search Google Scholar
    • Export Citation