AGEs inhibit scavenger receptor class B type I gene expression via Smad1 in HUVECs

in Journal of Molecular Endocrinology
View More View Less
  • 1 Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
  • 2 Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
  • 3 Life Science Research Center, Kagawa University, Miki-cho, Kagawa, Japan

Correspondence should be addressed to K Murao: mkoji@med.kagawa-u.ac.jp

Vascular complications are the main cause of morbidity and mortality in diabetic patients, and advanced glycation end products (AGEs) play a critical role in promoting diabetic vascular dysfunction. The human homolog of scavenger receptor class B type I (SR-BI), CD36, and LIMPII analog-1 (hSR-BI/CLA-1) facilitates the cellular uptake of cholesterol from HDL. In endothelial cells, HDL activates endothelial nitric oxide synthase (eNOS) via hSR-BI/CLA-1. In this study, we elucidated the effects of AGEs on hSR-BI/CLA-1 expression in human umbilical vein endothelial cells (HUVECs). HSR-BI/CLA-1 expression was examined by real-time PCR, western blot analysis, and reporter gene assay in HUVECs incubated with AGEs. eNOS activity was assessed by detecting the phosphorylation (Ser 1179) of eNOS. Our results showed that AGEs decreased the endogenous expression of hSR-BI/CLA-1. AGEs also inhibited the activity of the hSR-BI/CLA-1 promoter and its mRNA expression via receptor RAGE. We identified the binding site for Smad1 on the hSR-BI/CLA-1 promoter: Smad1 bound to its promoter. AGE treatment stimulated the transcriptional activity of Smad1, and mutation of the Smad1 binding site inhibited the effect of AGEs on the hSR-BI/CLA-1 promoter. HDL-treatment enhanced the phosphorylation of eNOS at Ser 1179, but pretreatment with AGEs inhibited the phosphorylation of eNOS Ser 1179. These results suggested that AGEs downregulate the expression of the endothelial hSR-BI/CLA-1 via the Smad1 pathway, which may be a therapeutic target for diabetic endothelial dysfunction.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 354 354 306
Full Text Views 7 7 2
PDF Downloads 9 9 4
  • Abe H, Matsubara T, Iehara N, Nagai K, Takahashi T, Arai H, Kita T & Doi T 2004 Type IV collagen is transcriptionally regulated by Smad1 under advanced glycation end product (AGE) stimulation. Journal of Biological Chemistry 279 1420114206. (https://doi.org/10.1074/jbc.M310427200)

    • Search Google Scholar
    • Export Citation
  • Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH & Krieger M 1996 Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271 518520. (https://doi.org/10.1126/science.271.5248.518)

    • Search Google Scholar
    • Export Citation
  • Bloom AL 1991 Progress in the clinical management of haemophilia. Thrombosis and Haemostasis 66 166177. (https://doi.org/10.1055/s-0038-1646386)

    • Search Google Scholar
    • Export Citation
  • Cao G, Garcia CK, Wyne KL, Schultz RA, Parker KL & Hobbs HH 1997 Structure and localization of the human gene encoding SR-BI/CLA-1. Evidence for transcriptional control by steroidogenic factor 1. Journal of Biological Chemistry 272 3306833076. (https://doi.org/10.1074/jbc.272.52.33068)

    • Search Google Scholar
    • Export Citation
  • Cao WM, Murao K, Imachi H, Yu X, Abe H, Yamauchi A, Niimi M, Miyauchi A, Wong NC & Ishida T 2004 A mutant high-density lipoprotein receptor inhibits proliferation of human breast cancer cells. Cancer Research 64 15151521. (https://doi.org/10.1158/0008-5472.can-03-0675)

    • Search Google Scholar
    • Export Citation
  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R & Zeiher AM 1999 Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399 601605. (https://doi.org/10.1038/21224)

    • Search Google Scholar
    • Export Citation
  • Drew BG, Fidge NH, Gallon-Beaumier G, Kemp BE & Kingwell BA 2004 High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. PNAS 101 69997004. (https://doi.org/10.1073/pnas.0306266101)

    • Search Google Scholar
    • Export Citation
  • Fukata Y, Yu X, Imachi H, Nishiuchi T, Lyu J, Seo K, Takeuchi A, Iwama H, Masugata H & Hoshikawa H et al. 2014 17β-Estradiol regulates scavenger receptor class BI gene expression via protein kinase C in vascular endothelial cells. Endocrine 46 644650. (https://doi.org/10.1007/s12020-013-0134-5)

    • Search Google Scholar
    • Export Citation
  • Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A & Sessa WC 1999 Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399 597601. (https://doi.org/10.1038/21218)

    • Search Google Scholar
    • Export Citation
  • Glomset JA 1968 The plasma lecithins:cholesterol acyltransferase reaction. Journal of Lipid Research 9 155167. (https://doi.org/10.1016/S0022-2275(2043114-1)

    • Search Google Scholar
    • Export Citation
  • Gong M, Wilson M, Kelly T, Su W, Dressman J, Kincer J, Matveev SV, Guo L, Guerin T & Li XA et al. 2003 HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. Journal of Clinical Investigation 111 15791587. (https://doi.org/10.1172/JCI16777)

    • Search Google Scholar
    • Export Citation
  • Goumans M-J, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P & Dijke P 2002 Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO Journal 21 1743–1753. (doi: 10.1093/emboj/21.7.1743)

    • Search Google Scholar
    • Export Citation
  • Hartge MM, Unger T & Kintscher U 2007 The endothelium and vascular inflammation in diabetes. Diabetes and Vascular Disease Research 4 8488. (https://doi.org/10.3132/dvdr.2007.025)

    • Search Google Scholar
    • Export Citation
  • Imachi H, Murao K, Cao W, Tada S, Taminato T, Wong NCW, Takahara J & Ishida T 2003 Expression of human scavenger receptor B1 on and in human platelets. Arteriosclerosis, Thrombosis, and Vascular Biology 23 898904. (https://doi.org/10.1161/01.ATV.0000067429.46333.7B)

    • Search Google Scholar
    • Export Citation
  • Ishibashi Y, Matsui T, Maeda S, Higashimoto Y & Yamagishi S 2013 Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovascular Diabetology 12 125. (https://doi.org/10.1186/1475-2840-12-125)

    • Search Google Scholar
    • Export Citation
  • Kumar P, Raghavan S, Shanmugam G & Shanmugam N 2013 Ligation of RAGE with ligand S100B attenuates ABCA1 expression in monocytes. Metabolism: Clinical and Experimental 62 11491158. (https://doi.org/10.1016/j.metabol.2013.02.006)

    • Search Google Scholar
    • Export Citation
  • Kusanagi K, Inoue H, Ishidou Y, Mishima HK, Kawabata M & Miyazono K 2000 Characterization of a bone morphogenetic protein-responsive Smad-binding element. Molecular Biology of the Cell 11 555565. (https://doi.org/10.1091/mbc.11.2.555)

    • Search Google Scholar
    • Export Citation
  • Lakshmi SP, Reddy AT & Reddy RC 2017 Transforming growth factor beta suppresses peroxisome proliferator-activated receptor gamma expression via both SMAD binding and novel TGF-beta inhibitory elements. Biochemical Journal 474 15311546. (https://doi.org/10.1042/BCJ20160943)

    • Search Google Scholar
    • Export Citation
  • Lopez D & McLean MP 2006 Activation of the rat scavenger receptor class B type I gene by PPARalpha. Molecular and Cellular Endocrinology 251 6777. (https://doi.org/10.1016/j.mce.2006.02.011)

    • Search Google Scholar
    • Export Citation
  • Lopez D, Sanchez MD, Shea-Eaton W & McLean MP 2002 Estrogen activates the high-density lipoprotein receptor gene via binding to estrogen response elements and interaction with sterol regulatory element binding protein-1A. Endocrinology 143 21552168. (https://doi.org/10.1210/endo.143.6.8855)

    • Search Google Scholar
    • Export Citation
  • Malerød L, Juvet LK, Hanssen-Bauer A, Eskild W & Berg T 2002 Oxysterol-activated LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochemical and Biophysical Research Communications 299 916923. (https://doi.org/10.1016/s0006-291x(0202760-2)

    • Search Google Scholar
    • Export Citation
  • Massague J 2000 How cells read TGF-beta signals. Nature Reviews: Molecular Cell Biology 1 169178. (https://doi.org/10.1038/35043051)

  • Murao K, Terpstra V, Green SR, Kondratenko N, Steinberg D & Quehenberger O 1997 Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. Journal of Biological Chemistry 272 1755117557. (https://doi.org/10.1074/jbc.272.28.17551)

    • Search Google Scholar
    • Export Citation
  • Murao K, Imachi H, Yu X, Cao WM, Muraoka T, Dobashi H, Hosomi N, Haba R, Iwama H & Ishida T 2008a The transcriptional factor prolactin regulatory element-binding protein mediates the gene transcription of adrenal scavenger receptor class B type I via 3′,5′-cyclic adenosine 5′-monophosphate. Endocrinology 149 61036112. (https://doi.org/10.1210/en.2008-0380)

    • Search Google Scholar
    • Export Citation
  • Murao K, Imachi H, Yu X, Cao WM, Nishiuchi T, Chen K, Li J, Ahmed RA, Wong NC & Ishida T 2008b Interferon alpha decreases expression of human scavenger receptor class BI, a possible HCV receptor in hepatocytes. Gut 57 664671. (https://doi.org/10.1136/gut.2006.111443)

    • Search Google Scholar
    • Export Citation
  • Murao K, Yu X, Imachi H, Cao WM, Chen K, Matsumoto K, Nishiuchi T, Wong NC & Ishida T 2008c Hyperglycemia suppresses hepatic scavenger receptor class B type I expression. American Journal of Physiology: Endocrinology and Metabolism 294 E78E87. (https://doi.org/10.1152/ajpendo.00023.2007)

    • Search Google Scholar
    • Export Citation
  • Nin JW, Jorsal A, Ferreira I, Schalkwijk CG, Prins MH, Parving HH, Tarnow L, Rossing P & Stehouwer CD 2011 Higher plasma levels of advanced glycation end products are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study. Diabetes Care 34 442447. (https://doi.org/10.2337/dc10-1087)

    • Search Google Scholar
    • Export Citation
  • Ohashi S, Abe H, Takahashi T, Yamamoto Y, Takeuchi M, Arai H, Nagata K, Kita T, Okamoto H & Yamamoto H et al. 2004 Advanced glycation end products increase collagen-specific chaperone protein in mouse diabetic nephropathy. Journal of Biological Chemistry 279 1981619823. (https://doi.org/10.1074/jbc.M310428200)

    • Search Google Scholar
    • Export Citation
  • Orasanu G & Plutzky J 2009 The pathologic continuum of diabetic vascular disease. Journal of the American College of Cardiology 53 (Supplement 5) S35S42. (https://doi.org/10.1016/j.jacc.2008.09.055)

    • Search Google Scholar
    • Export Citation
  • Pedrinelli R, Giampietro O, Carmassi F, Melillo E, Dell’Omo G, Catapano G, Matteucci E, Talarico L, Morale M & De Negri F 1994 Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 344 1418. (https://doi.org/10.1016/s0140-6736(9491047-2)

    • Search Google Scholar
    • Export Citation
  • Pruitt KD, Tatusova T & Maglott DR 2005 NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 33 D501D504. (https://doi.org/10.1093/nar/gki025)

    • Search Google Scholar
    • Export Citation
  • Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF & Holme I et al. 2011 Diabetes mellitus, fasting glucose, and risk of cause-specific death. New England Journal of Medicine 364 829841. (https://doi.org/10.1056/NEJMoa1008862)

    • Search Google Scholar
    • Export Citation
  • Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D & Miller W 2003 Human-mouse alignments with BLASTZ. Genome Research 13 103107. (https://doi.org/10.1101/gr.809403)

    • Search Google Scholar
    • Export Citation
  • Shaul PW & Mineo C 2004 HDL action on the vascular wall: is the answer NO? Journal of Clinical Investigation 113 509513. (https://doi.org/10.1172/JCI21072)

    • Search Google Scholar
    • Export Citation
  • Shea-Eaton W, Lopez D & McLean MP 2001 Yin Yang 1 protein negatively regulates high-density lipoprotein receptor gene transcription by disrupting binding of sterol regulatory element binding protein to the sterol regulatory element. Endocrinology 142 4958. (https://doi.org/10.1210/endo.142.1.7868)

    • Search Google Scholar
    • Export Citation
  • Silver DL 2002 A carboxyl-terminal PDZ-interacting domain of scavenger receptor B, type I is essential for cell surface expression in liver. Journal of Biological Chemistry 277 3404234047. (https://doi.org/10.1074/jbc.M206584200)

    • Search Google Scholar
    • Export Citation
  • Soro-Paavonen A, Zhang WZ, Venardos K, Coughlan MT, Harris E, Tong DC, Brasacchio D, Paavonen K, Chin-Dusting J & Cooper ME et al. 2010 Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. Journal of Hypertension 28 780788. (https://doi.org/10.1097/HJH.0b013e328335043e)

    • Search Google Scholar
    • Export Citation
  • Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Gotting C, Kleesiek K, Mueller Roesel M, Koschinsky T & Uribarri J et al. 2006 Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 29 20642071. (https://doi.org/10.2337/dc06-0531)

    • Search Google Scholar
    • Export Citation
  • Tall AR 1990 Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. Journal of Clinical Investigation 86 379384. (https://doi.org/10.1172/JCI114722)

    • Search Google Scholar
    • Export Citation
  • Wang S, Xu J, Song P, Wu Y, Zhang J, Choi H & Zou MH 2008 Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Hypertension 52 484490. (https://doi.org/10.1161/HYPERTENSIONAHA.108.112094)

    • Search Google Scholar
    • Export Citation
  • Xu J, Wang S, Wu Y, Song P & Zou MH 2009 Tyrosine nitration of PA700 activates the 26S proteasome to induce endothelial dysfunction in mice with angiotensin II-induced hypertension. Hypertension 54 625632. (https://doi.org/10.1161/HYPERTENSIONAHA.109.133736)

    • Search Google Scholar
    • Export Citation
  • Yan SF, Ramasamy R & Schmidt AM 2008 Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nature Clinical Practice: Endocrinology and Metabolism 4 285293. (https://doi.org/10.1038/ncpendmet0786)

    • Search Google Scholar
    • Export Citation
  • Yu X, Murao K, Imachi H, Cao WM, Li J, Matsumoto K, Nishiuchi T, Ahmed RA, Wong NC & Kosaka H et al. 2007 Regulation of scavenger receptor class BI gene expression by angiotensin II in vascular endothelial cells. Hypertension 49 13781384. (https://doi.org/10.1161/HYPERTENSIONAHA.106.082479)

    • Search Google Scholar
    • Export Citation
  • Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RG, Mendelsohn ME & Hobbs HH et al. 2001 High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nature Medicine 7 853857. (https://doi.org/10.1038/89986)

    • Search Google Scholar
    • Export Citation