Characterization of α-MSH browning effect in diverse mice white adipose tissue depots

in Journal of Molecular Endocrinology
View More View Less
  • 1 Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Alameda Prof Hernâni Monteiro, Porto, Portugal
  • | 2 IBMC – Instituto de Biologia Molecular e Celular, I3S – Instituto de Investigação e Inovação em Saúde, Porto, Portugal
  • | 3 CIAFEL – Centro de Investigação em Atividade Física, Saúde e Lazer, LaMetEx – Laboratory of Metabolism and Exercise, Faculdade de Desporto da Universidade do Porto, Porto, Portugal
  • | 4 Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal

Correspondence should be addressed to A M Gouveia: agouveia@med.up.pt
Restricted access

White adipose tissue (WAT) browning is a potent mechanism to dissipate energy as heat and, thus, its activation constitutes a promise therapeutic approach to obesity. We previously reported the melanocortin α-melanocyte stimulating hormone (α-MSH) ability to increase the number of beige cells in subcutaneous inguinal WAT (ingWAT) in high fat diet (HFD)-fed mice. The current study examined the browning effect of intraperitoneally administered α-MSH on diverse fat depots from mice fed with HFD or standard rodent diet (SD). For this, mRNA expression of browning hallmark genes was quantified concomitantly with histological examination of the adipose tissue samples (epidydimal (eWAT), mesenteric (mWAT), retroperitoneal (rpWAT) or ingWAT). As well, α-MSH impact on body weight, serum profile, WAT mass and lipolytic rates were evaluated. In the visceral depots mWAT, eWAT and rpWAT from HFD-fed mice, α-MSH was not able to induce a browning mechanism. Surprisingly, in SD-fed mice, α-MSH decreased the expression of several beige-specific genes in rpWAT and promoted an increase of the size of lipid droplets. No browning effect was observed in ingWAT from SD-fed mice. We also verified that HFD ingestion per se stimulated the browning mechanisms in rpWAT, but not in mWAT and eWAT. In conclusion, the fat depots from diverse anatomical locations respond differently to α-MSH treatment when exposed to different diets.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1370 1370 79
Full Text Views 53 53 0
PDF Downloads 22 22 0
  • Asano H, Yamada T, Hashimoto O, Umemoto T, Sato R, Ohwatari S, Kanamori Y, Terachi T, Funaba M & Matsui T 2013 Diet-induced changes in Ucp1 expression in bovine adipose tissues. General and Comparative Endocrinology 184 8792. (https://doi.org/10.1016/j.ygcen.2013.01.006)

    • Search Google Scholar
    • Export Citation
  • Brito MN, Brito NA, Baro DJ, Song CK & Bartness TJ 2007 Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology 148 53395347. (https://doi.org/10.1210/en.2007-0621)

    • Search Google Scholar
    • Export Citation
  • Cho KJ, Shim JH, Cho MC, Choe YK, Hong JT, Moon DC, Kim JW & Yoon DY 2005 Signaling pathways implicated in alpha-melanocyte stimulating hormone-induced lipolysis in 3T3-L1 adipocytes. Journal of Cellular Biochemistry 96 869878. (https://doi.org/10.1002/jcb.20561)

    • Search Google Scholar
    • Export Citation
  • Cinti S 2005 The adipose organ. Prostaglandins, Leukotrienes, and Essential Fatty Acids 73 915. (https://doi.org/10.1016/j.plefa.2005.04.010)

    • Search Google Scholar
    • Export Citation
  • Cronin CG, Prakash P, Daniels GH, Boland GW, Kalra MK, Halpern EF, Palmer EL & Blake MA 2012 Brown fat at PET/CT: correlation with patient characteristics. Radiology 263 836842. (https://doi.org/10.1148/radiol.12100683)

    • Search Google Scholar
    • Export Citation
  • Dichamp J, Barreau C, Guissard C, Carriere A, Martinez Y, Descombes X, Penicaud L, Rouquette J, Casteilla L & Plouraboue F et al. 2019 3D analysis of the whole subcutaneous adipose tissue reveals a complex spatial network of interconnected lobules with heterogeneous browning ability. Scientific Reports 9 6684. (https://doi.org/10.1038/s41598-019-43130-9))

    • Search Google Scholar
    • Export Citation
  • Enriori PJ, Chen W, Garcia-Rudaz MC, Grayson BE, Evans AE, Comstock SM, Gebhardt U, Muller HL, Reinehr T & Henry BA et al. 2016 Alpha-melanocyte stimulating hormone promotes muscle glucose uptake via melanocortin 5 receptors. Molecular Metabolism 5 807822. (https://doi.org/10.1016/j.molmet.2016.07.009)

    • Search Google Scholar
    • Export Citation
  • Fromme T & Klingenspor M 2011 Uncoupling protein 1 expression and high-fat diets. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 300 R1R8. (https://doi.org/10.1152/ajpregu.00411.2010)

    • Search Google Scholar
    • Export Citation
  • Fujimoto Y, Hashimoto O, Shindo D, Sugiyama M, Tomonaga S, Murakami M, Matsui T & Funaba M 2019 Metabolic changes in adipose tissues in response to beta3-adrenergic receptor activation in mice. Journal of Cellular Biochemistry 120 821835. (https://doi.org/10.1002/jcb.27443)

    • Search Google Scholar
    • Export Citation
  • Galarraga M, Campion J, Munoz-Barrutia A, Boque N, Moreno H, Martinez JA, Milagro F & Ortiz-de-Solorzano C 2012 Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections. Journal of Lipid Research 53 27912796. (https://doi.org/10.1194/jlr.D023788)

    • Search Google Scholar
    • Export Citation
  • Garcia-Ruiz E, Reynes B, Diaz-Rua R, Ceresi E, Oliver P & Palou A 2015 The intake of high-fat diets induces the acquisition of brown adipocyte gene expression features in white adipose tissue. International Journal of Obesity 39 16191629. (https://doi.org/10.1038/ijo.2015.112)

    • Search Google Scholar
    • Export Citation
  • Giralt M & Villarroya F 2013 White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154 29923000. (https://doi.org/10.1210/en.2013-1403)

    • Search Google Scholar
    • Export Citation
  • Goossens GH 2017 The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obesity Facts 10 207215. (https://doi.org/10.1159/000471488)

    • Search Google Scholar
    • Export Citation
  • Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G & Cinti S 2000 Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. American Journal of Physiology: Cell Physiology 279 C670C 681. (https://doi.org/10.1152/ajpcell.2000.279.3.C670)

    • Search Google Scholar
    • Export Citation
  • Lehnig AC, Dewal RS, Baer LA, Kitching KM, Munoz VR, Arts PJ, Sindeldecker DA, May FJ, Lauritzen H & Goodyear LJ et al. 2019 Exercise training induces depot-specific adaptations to white and brown adipose tissue. iScience 11 425439. (https://doi.org/10.1016/j.isci.2018.12.033)

    • Search Google Scholar
    • Export Citation
  • Moller CL, Raun K, Jacobsen ML, Pedersen , Holst B, Conde-Frieboes KW & Wulff BS 2011 Characterization of murine melanocortin receptors mediating adipocyte lipolysis and examination of signalling pathways involved. Molecular and Cellular Endocrinology 341 917. (https://doi.org/10.1016/j.mce.2011.03.010)

    • Search Google Scholar
    • Export Citation
  • Passaro A, Miselli MA, Sanz JM, Dalla Nora E, Morieri ML, Colonna R, Pisot R & Zuliani G 2017 Gene expression regional differences in human subcutaneous adipose tissue. BMC Genomics 18 202. (https://doi.org/10.1186/s12864-017-3564-2)

    • Search Google Scholar
    • Export Citation
  • Persichetti A, Sciuto R, Rea S, Basciani S, Lubrano C, Mariani S, Ulisse S, Nofroni I, Maini CL & Gnessi L 2013 Prevalence, mass, and glucose-uptake activity of 18F-FDG-detected brown adipose tissue in humans living in a temperate zone of Italy. PLoS ONE 8 e63391. (https://doi.org/10.1371/journal.pone.0063391)

    • Search Google Scholar
    • Export Citation
  • Pico C, Bonet ML & Palou A 1998 Stimulation of uncoupling protein synthesis in white adipose tissue of mice treated with the beta 3-adrenergic agonist CGP-12177. Cellular and Molecular Life Sciences 54 191195. (https://doi.org/10.1007/s000180050142)

    • Search Google Scholar
    • Export Citation
  • Rocha-Rodrigues S, Rodriguez A, Gouveia AM, Goncalves IO, Becerril S, Ramirez B, Beleza J, Fruhbeck G, Ascensao A & Magalhaes J 2016 Effects of physical exercise on myokines expression and brown adipose-like phenotype modulation in rats fed a high-fat diet. Life Sciences 165 100108. (https://doi.org/10.1016/j.lfs.2016.09.023)

    • Search Google Scholar
    • Export Citation
  • Rockstroh D, Landgraf K, Wagner IV, Gesing J, Tauscher R, Lakowa N, Kiess W, Buhligen U, Wojan M & Till H et al. 2015 Direct evidence of brown adipocytes in different fat depots in children. PLoS ONE 10 e0117841. (https://doi.org/10.1371/journal.pone.0117841)

    • Search Google Scholar
    • Export Citation
  • Rodrigues AR, Almeida H & Gouveia AM 2012 Melanocortin 5 receptor signaling and internalization: role of MAPK/ERK pathway and beta-arrestins 1/2. Molecular and Cellular Endocrinology 361 6979. (https://doi.org/10.1016/j.mce.2012.03.011)

    • Search Google Scholar
    • Export Citation
  • Rodrigues AR, Almeida H & Gouveia AM 2013 α-MSH signalling via melanocortin 5 receptor promotes lipolysis and impairs re-esterification in adipocytes. Biochimica et Biophysica Acta 1831 12671275. (https://doi.org/10.1016/j.bbalip.2013.04.008)

    • Search Google Scholar
    • Export Citation
  • Rodrigues AR, Almeida H & Gouveia AM 2015 Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cellular and Molecular Life Sciences 72 13311345. (https://doi.org/10.1007/s00018-014-1800-3)

    • Search Google Scholar
    • Export Citation
  • Rodrigues AR, Salazar MJ, Rocha-Rodrigues S, Goncalves IO, Cruz C, Neves D, Almeida H, Magalhaes J & Gouveia AM 2019 Peripherally administered melanocortins induce mice fat browning and prevent obesity. International Journal of Obesity 43 10581069. (https://doi.org/10.1038/s41366-018-0155-5)

    • Search Google Scholar
    • Export Citation
  • Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E, Millership S, Fenech ME, MacIntyre D & Turner JO et al. 2014 Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. American Journal of Physiology: Endocrinology and Metabolism 306 E945E964. (https://doi.org/10.1152/ajpendo.00473.2013)

    • Search Google Scholar
    • Export Citation
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S & Schmid B et al. 2012 Fiji: an open-source platform for biological-image analysis. Nature Methods 9 676682. (https://doi.org/10.1038/nmeth.2019)

    • Search Google Scholar
    • Export Citation
  • Shin S & Ajuwon KM 2018 Effects of diets differing in composition of 18-C fatty acids on adipose tissue thermogenic gene expression in mice fed high-fat diets. Nutrients 10 256. (https://doi.org/10.3390/nu10020256)

    • Search Google Scholar
    • Export Citation
  • Shin W, Okamatsu-Ogura Y, Matsuoka S, Tsubota A & Kimura K 2019 Impaired adrenergic agonist-dependent beige adipocyte induction in obese mice. Journal of Veterinary Medical Science 81 799807. (https://doi.org/10.1292/jvms.19-0070)

    • Search Google Scholar
    • Export Citation
  • Shipp SL, Wang G, Cline MA & Gilbert ER 2017 Chick subcutaneous and abdominal adipose tissue depots respond differently in lipolytic and adipogenic activity to alpha-melanocyte stimulating hormone (alpha-MSH). Comparative Biochemistry and Physiology: Part A, Molecular and Integrative Physiology 209 5664. (https://doi.org/10.1016/j.cbpa.2017.04.013)

    • Search Google Scholar
    • Export Citation
  • Smith SR, Gawronska-Kozak B, Janderova L, Nguyen T, Murrell A, Stephens JM & Mynatt RL 2003 Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes. Diabetes 52 29142922. (https://doi.org/10.2337/diabetes.52.12.2914)

    • Search Google Scholar
    • Export Citation
  • Strader AD, Shi H, Ogawa R, Seeley RJ & Reizes O 2007 The effects of the melanocortin agonist (MT-II) on subcutaneous and visceral adipose tissue in rodents. Journal of Pharmacology and Experimental Therapeutics 322 11531161. (https://doi.org/10.1124/jpet.107.123091)

    • Search Google Scholar
    • Export Citation
  • Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, Brinsden H, Calvillo A, De Schutter O & Devarajan R et al. 2019 The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission Report. Lancet 393 791846. (https://doi.org/10.1016/S0140-6736(1832822-8)

    • Search Google Scholar
    • Export Citation
  • Thyagarajan B & Foster MT 2017 Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Hormone Molecular Biology and Clinical Investigation 31 [epub]. (https://doi.org/10.1515/hmbci-2017-0016)

    • Search Google Scholar
    • Export Citation
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P & Teule GJ 2009 Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 360 15001508. (https://doi.org/10.1056/NEJMoa0808718)

    • Search Google Scholar
    • Export Citation
  • Wang N, Guo J, Liu F, Wang M, Li C, Jia L, Zhai L, Wei W & Bai Y 2017a Depot-specific inflammation with decreased expression of ATM2 in white adipose tissues induced by high-margarine/lard intake. PLoS ONE 12 e0188007. (https://doi.org/10.1371/journal.pone.0188007)

    • Search Google Scholar
    • Export Citation
  • Wang X, Yu C, Feng J, Chen J, Jiang Q, Kuang S & Wang Y 2017b Depot-specific differences in fat mass expansion in WT and ob/ob mice. Oncotarget 8 4632646336. (https://doi.org/10.18632/oncotarget.17938)

    • Search Google Scholar
    • Export Citation
  • Wijayatunga NN, Pahlavani M, Kalupahana NS, Kottapalli KR, Gunaratne PH, Coarfa C, Ramalingam L & Moustaid-Moussa N 2018 An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice. Oncotarget 9 92469261. (https://doi.org/10.18632/oncotarget.24226)

    • Search Google Scholar
    • Export Citation
  • Wu MV, Bikopoulos G, Hung S & Ceddia RB 2014 Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure. Journal of Biological Chemistry 289 3412934140. (https://doi.org/10.1074/jbc.M114.591008)

    • Search Google Scholar
    • Export Citation
  • Yoshida T, Umekawa T, Kumamoto K, Sakane N, Kogure A, Kondo M, Wakabayashi Y, Kawada T, Nagase I & Saito M 1998 beta 3-Adrenergic agonist induces a functionally active uncoupling protein in fat and slow-twitch muscle fibers. American Journal of Physiology 274 E469E475. (https://doi.org/10.1152/ajpendo.1998.274.3.E469)

    • Search Google Scholar
    • Export Citation