circAkap17b acts as a miR-7 family molecular sponge to regulate FSH secretion in rat pituitary cells

in Journal of Molecular Endocrinology
View More View Less
  • 1 Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China

Correspondence should be addressed to B Yuan or J-B Zhang: yuan_bao@jlu.edu.cn or zjb@jlu.edu.com

*(C-J Wang and F Gao contributed equally to this work)

Restricted access

The pituitary gland functions as a prominent regulator of diverse physiologic processes by secreting multiple hormones. Circular RNAs (circRNAs) are an emerging novel type of endogenous noncoding RNA that have recently been recognized as powerful regulators participating in various biological processes. However, the physiological roles and molecular mechanisms of circRNAs in pituitary remain largely unclear. Herein, we concentrated on expounding the biological function and molecular mechanism of circRNA in rat pituitary. In this study, we identified a novel circRNA in pituitary tissue, circAkap17b, which was pituitary- and stage-specific. Then, we designed circAkap17b siRNA and constructed an overexpression plasmid to evaluate the effect of loss- and gain-of-circAkap17b function on FSH secretion. Interestingly, silencing circAkakp17b significantly inhibited FSH expression and secretion, while overexpression of circAkap17b enhanced FSH expression and secretion. Furthermore, dual luciferase reporter and RNA immunoprecipitation (RIP) assays confirmed that circAkap17b could serve as miR-7 sponge to regulate target genes. Additionally, miR-7b suppressed FSH expression and secretion by directly targeting Fshb through the dual luciferase reporter and RT-qPCR analysis. Additionally, rescue experiments showed that circAkap17b could regulate FSH secretion in pituitary cells through a circAkap17b-miR-7-Fshb axis. Collectively, we demonstrated that circAkap17b could act as a molecular sponge of miR-7 to upregulate expression of the target gene Fshb and facilitate FSH secretion. These findings provide evidence for a novel regulatory role of circRNAs in pituitary.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 116 116 116
Full Text Views 12 12 12
PDF Downloads 10 10 10
  • Ahmed K, Lapierre MP, Gasser E, Denzler R, Yang Y, Rulicke T, Kero J, Latreille M & Stoffel M 2017 Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. Journal of Clinical Investigation 127 10611074. (https://doi.org/10.1172/JCI90031)

    • Search Google Scholar
    • Export Citation
  • Amar L, Benoit C, Beaumont G, Vacher CM, Crepin D, Taouis M & Baroin-Tourancheau A 2012 MicroRNA expression profiling of hypothalamic arcuate and paraventricular nuclei from single rats using Illumina sequencing technology. Journal of Neuroscience Methods 209 1341 43. (https://doi.org/10.1016/j.jneumeth.2012.05.033)

    • Search Google Scholar
    • Export Citation
  • Ambros V 2004 The functions of animal microRNAs. Nature 431 35035 5. (https://doi.org/10.1038/nature02871)

  • Bartel DP 2009 MicroRNAs: target recognition and regulatory functions. Cell 136 2152 33. (https://doi.org/10.1016/j.cell.2009.01.002)

  • Chen LL 2016 The biogenesis and emerging roles of circular RNAs. Nature Reviews: Molecular Cell Biology 17 2052 11. (https://doi.org/10.1038/nrm.2015.32)

    • Search Google Scholar
    • Export Citation
  • Chen LL & Yang L 2015 Regulation of circRNA biogenesis. RNA Biology 12 38138 8. (https://doi.org/10.1080/15476286.2015.1020271)

  • Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L & Ge S 2017 circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene 36 45514561. (https://doi.org/10.1038/onc.2017.89)

    • Search Google Scholar
    • Export Citation
  • Chen B, Wei W, Huang X, Xie X, Kong Y, Dai D, Yang L, Wang J, Tang H, Xie X2018 circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression Theranostics 8 40034015. (https://doi.org/10.7150/thno.24106)

    • Search Google Scholar
    • Export Citation
  • Chen B, Li Y, Liu Y & Xu Z 2019a circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. Journal of Cellular Physiology 234 2124921259. (https://doi.org/10.1002/jcp.28730)

    • Search Google Scholar
    • Export Citation
  • Chen L, Nan A, Zhang N, Jia Y, Li X, Ling Y, Dai J, Zhang S, Yang Q, Yi Y, et al. 2019b Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer. Molecular Cancer 18 13. (https://doi.org/10.1186/s12943-019-0943-0)

    • Search Google Scholar
    • Export Citation
  • Cheng X, Zhang L, Zhang K, Zhang G, Hu Y, Sun X, Zhao C, Li H, Li YM & Zhao J 2018 Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Annals of the Rheumatic Diseases 77 770779. (https://doi.org/10.1136/annrheumdis-2017-212056)

    • Search Google Scholar
    • Export Citation
  • Cocquerelle C, Mascrez B, Hetuin D & Bailleul B 1993 Mis-splicing yields circular RNA molecules. FASEB Journal 7 1551 60. (https://doi.org/10.1096/fasebj.7.1.7678559)

    • Search Google Scholar
    • Export Citation
  • Comi RJ 1993 Approach to acute hypoglycemia. Endocrinology and Metabolism Clinics of North America 22 2472 62. (https://doi.org/10.1016/S0889-8529(1830164-6)

    • Search Google Scholar
    • Export Citation
  • Cui X, Wang J, Guo Z, Li M, Li M, Liu S, Liu H, Li W, Yin X, Tao J, et al. 2018 Emerging function and potential diagnostic value of circular RNAs in cancer. Molecular Cancer 17 123. (https://doi.org/10.1186/s12943-018-0877-y)

    • Search Google Scholar
    • Export Citation
  • De Jong FH 1988 Inhibin. Physiological Reviews 68 555607. (https://doi.org/10.1152/physrev.1988.68.2.555)

  • Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, Li B, Zhang C & Duan C 2017 Circular RNAs in cancer: an emerging key player. Journal of Hematology and Oncology 10 2. (https://doi.org/10.1186/s13045-016-0370-2)

    • Search Google Scholar
    • Export Citation
  • Dube U, Del-Aguila JL, Li Z, Budde JP, Jiang S, Hsu S, Ibanez L, Fernandez MV, Farias F, Norton J, et al. 2019 An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nature Neuroscience 22 19031912. (https://doi.org/10.1038/s41593-019-0501-5)

    • Search Google Scholar
    • Export Citation
  • Ebbesen KK, Hansen TB & Kjems J 2017 Insights into circular RNA biology. RNA Biology 14 10351045. (https://doi.org/10.1080/15476286.2016.1271524)

    • Search Google Scholar
    • Export Citation
  • Fauquier T, Lacampagne A, Travo P, Bauer K & Mollard P 2002 Hidden face of the anterior pituitary. Trends in Endocrinology and Metabolism 13 30430 9. (https://doi.org/10.1016/s1043-2760(0200616-1)

    • Search Google Scholar
    • Export Citation
  • Fernandez-De Frutos M, Galan-Chilet I, Goedeke L, Kim B, Pardo-Marques V, Perez-Garcia A, Herrero JI, Fernandez-Hernando C, Kim J & Ramirez CM 2019 MicroRNA 7 impairs insulin signaling and regulates Abeta levels through posttranscriptional regulation of the insulin receptor substrate 2, insulin receptor, insulin-degrading enzyme, and liver X receptor pathway. Molecular and Cellular Biology 39 e00170-19. (https://doi.org/10.1128/MCB.00170-19)

    • Search Google Scholar
    • Export Citation
  • Gao Y, Li J, Zhang Z, Zhang R, Pollock A & Sun T 2019 MicroRNA miR-7 and miR-17-92 in the arcuate nucleus of mouse hypothalamus regulate sex-specific diet-induced obesity. Molecular Neurobiology 56 75087521. (https://doi.org/10.1007/s12035-019-1618-y)

    • Search Google Scholar
    • Export Citation
  • Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al. 2019 Circular RNA circFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nature Communications 10 4317. (https://doi.org/10.1038/s41467-019-11777-7)

    • Search Google Scholar
    • Export Citation
  • Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX & Ji XP 2016 The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS ONE 11 e0151753. (https://doi.org/10.1371/journal.pone.0151753)

    • Search Google Scholar
    • Export Citation
  • Guo JU, Agarwal V, Guo H & Bartel DP 2014 Expanded identification and characterization of mammalian circular RNAs. Genome Biology 15 409. (https://doi.org/10.1186/s13059-014-0409-z)

    • Search Google Scholar
    • Export Citation
  • Guo Y, Luo F, Liu Q & Xu D 2017 Regulatory non-coding RNAs in acute myocardial infarction. Journal of Cellular and Molecular Medicine 21 10131023. (https://doi.org/10.1111/jcmm.13032)

    • Search Google Scholar
    • Export Citation
  • Guo XY, Sun F, Chen JN, Wang YQ, Pan Q & Fan JG 2018 circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World Journal of Gastroenterology 24 323337. (https://doi.org/10.3748/wjg.v24.i3.323)

    • Search Google Scholar
    • Export Citation
  • Guo G, Wang H, Ye L, Shi X, Yan K, Lin K, Huang Q, Li B, Lin Q, Zhu L, et al. 2019a Hsa_circ_0000479 as a novel diagnostic biomarker of systemic lupus erythematosus. Frontiers in Immunology 10 2281. (https://doi.org/10.3389/fimmu.2019.02281)

    • Search Google Scholar
    • Export Citation
  • Guo T, Zhang J, Yao WDU, Li X, Huang Q, Ma L, Li M, Liu QH, et al. 2019b circINHA resists granulosa cell apoptosis by up-regulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles. Biochimica et Biophysica Acta: Gene Regulatory Mechanisms 1862 194420. (https://doi.org/10.1016/j.bbagrm.2019.194420)

    • Search Google Scholar
    • Export Citation
  • Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, huang M, et al. 2017a Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66 11511164. (https://doi.org/10.1002/hep.29270)

    • Search Google Scholar
    • Export Citation
  • Han DX, Sun XL, Xu MQ, Chen CZ, Jiang H, Gao Y, Yuan B & Zhang JB 2017b Roles of differential expression of microRNA-21-3p and microRNA-433 in FSH regulation in rat anterior pituitary cells. Oncotarget 8 3655336565. (https://doi.org/10.18632/oncotarget.16615)

    • Search Google Scholar
    • Export Citation
  • Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, et al. 2018a Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 14 11641184. (https://doi.org/10.1080/15548627.2018.1458173)

    • Search Google Scholar
    • Export Citation
  • Han DX, Xiao Y, Wang CJ, Jiang H, Gao Y, Yuan B & Zhang JB 2018b Regulation of FSH expression by differentially expressed miR-186-5p in rat anterior adenohypophyseal cells. PLoS ONE 13 e0194300. (https://doi.org/10.1371/journal.pone.0194300)

    • Search Google Scholar
    • Export Citation
  • Han DX, Wang CJ, Sun XL, Liu JB, Jiang H, Gao Y, Chen CZ, Yuan B & Zhang JB 2019 Identification of circular RNAs in the immature and mature rat anterior pituitary. Journal of Endocrinology 240 393402. (https://doi.org/10.1530/JOE-18-0540)

    • Search Google Scholar
    • Export Citation
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK & Kjems J 2013 Natural RNA circles function as efficient microRNA sponges. Nature 495 38438 8. (https://doi.org/10.1038/nature11993)

    • Search Google Scholar
    • Export Citation
  • He J, Zhang J, Wang Y, Liu W, Gou K, Liu Z & Cui S 2018 miR-7 mediates the zearalenone signaling pathway regulating FSH synthesis and secretion by targeting FOS in female pigs. Endocrinology 159 29933006. (https://doi.org/10.1210/en.2018-00097)

    • Search Google Scholar
    • Export Citation
  • Hentze MW & Preiss T 2013 Circular RNAs: splicing’s enigma variations. EMBO Journal 32 92392 5. (https://doi.org/10.1038/emboj.2013.53)

  • Hong GK, Payne SC, Jane JA JR 2016 Anatomy, physiology, and laboratory evaluation of the pituitary gland. Otolaryngologic Clinics of North America 49 2132. (https://doi.org/10.1016/j.otc.2015.09.002)

    • Search Google Scholar
    • Export Citation
  • Howles CM 2000 Role of LH and FSH in ovarian function. Molecular and Cellular Endocrinology 161 2530. (https://doi.org/10.1016/s0303-7207(9900219-1)

    • Search Google Scholar
    • Export Citation
  • Hu G, Niu F, Liao K, Periyasamy P, Sil S, Liu J, Dravid SM & Buch S 2019 HIV-1 Tat-induced astrocytic extracellular vesicle mir-7 impairs synaptic architecture. Journal of Neuroimmune Pharmacology 1 5 538553. (https://doi.org/10.1007/s11481-019-09869-8)

    • Search Google Scholar
    • Export Citation
  • Huang S, Li X, Zheng H, Si X, Li B, Wei G, Li C, Chen Y, Chen Y, Liao W, et al. 2019a Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139 28572876. (https://doi.org/10.1161/CIRCULATIONAHA.118.038361)

    • Search Google Scholar
    • Export Citation
  • Huang W, Fang K, Chen TQ, Zeng ZC, Sun YM, Han C, Sun LY, Chen ZH, Yang QQ, Pan Q, et al. 2019b circRNA circAF4 functions as an oncogene to regulate MLL-AF4 fusion protein expression and inhibit MLL leukemia progression. Journal of Hematology and Oncology 12 103. (https://doi.org/10.1186/s13045-019-0800-z)

    • Search Google Scholar
    • Export Citation
  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF & Sharpless NE 2013 Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19 1411 57. (https://doi.org/10.1261/rna.035667.112)

    • Search Google Scholar
    • Export Citation
  • Lamminen T, Jokinen P, Jiang M, Pakarinen P, Simonsen H & Huhtaniemi I 2005 Human FSH beta subunit gene is highly conserved. Molecular Human Reproduction 11 60160 5. (https://doi.org/10.1093/molehr/gah198)

    • Search Google Scholar
    • Export Citation
  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al. 2007 A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129 140114 14. (https://doi.org/10.1016/j.cell.2007.04.040)

    • Search Google Scholar
    • Export Citation
  • Legnini I, Di timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al. 2017 circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Molecular Cell 66 22–37.e9. (https://doi.org/10.1016/j.molcel.2017.02.017)

    • Search Google Scholar
    • Export Citation
  • Li YZ, Wen L, Wei X, Wang QR, Xu LW, Zhang HM & Liu WC 2016 Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4. Oncology Reports 36 156915 75. (https://doi.org/10.3892/or.2016.4912)

    • Search Google Scholar
    • Export Citation
  • Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, Liu D, Wang M, Wang L, Zeng F, et al. 2017 circHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Reports 18 16461659. (https://doi.org/10.15252/embr.201643581)

    • Search Google Scholar
    • Export Citation
  • Li X, Yang L & Chen LL 2018 The Biogenesis, functions, and challenges of circular RNAs. Molecular Cell 71 428442. (https://doi.org/10.1016/j.molcel.2018.06.034)

    • Search Google Scholar
    • Export Citation
  • Li C, Li M & Xue Y 2019a Downregulation of circRNA CDR1as specifically triggered low-dose Diosbulbin-B induced gastric cancer cell death by regulating miR-7-5p/REGgamma axis. Biomedicine and Pharmacotherapy 120 109462. (https://doi.org/10.1016/j.biopha.2019.109462)

    • Search Google Scholar
    • Export Citation
  • Li L, Chen Y, Nie L, Ding X, Zhang X, Zhao W, Xu X, Kyei B, Dai D, Zhan S, et al. 2019b MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells. Biochimica et Biophysica Acta: Gene Regulatory Mechanisms 1862 807821. (https://doi.org/10.1016/j.bbagrm.2019.07.001)

    • Search Google Scholar
    • Export Citation
  • Li X, Li C, Liu Z, Ni W, Yao R, Xu Y, Quan R, Zhang M, Li H, Liu L, et al. 2019c Circular RNA circ-FoxO3 inhibits myoblast cells differentiation. Cells 8 616. (https://doi.org/10.3390/cells8060616)

    • Search Google Scholar
    • Export Citation
  • Liu P, Ji Y, Yuen T, Rendina-Ruedy E, Demambro VE, Dhawan S, Abu-Amer W, Izadmehr S, Zhou B, Shin AC, et al. 2017 Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546 107112. (https://doi.org/10.1038/nature22342)

    • Search Google Scholar
    • Export Citation
  • Liu C, Yuan B, Chen H, Xu M, Sun X, Xu J, Gao Y, Chen C, Jiang H & Zhang J 2018 Effects of miR-375-BMPR2 as a key factor downstream of BMP15/GDF9 on the Smad1/5/8 and Smad2/3 signaling pathways. Cellular Physiology and Biochemistry 46 213225. (https://doi.org/10.1159/000488424)

    • Search Google Scholar
    • Export Citation
  • Liu CX, Li X, nan F, Jiang S, Gao X, Guo SK, Xue W, Cui Y, Dong K, Ding H, et al. 2019a Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177 865.e21–880.e21. (https://doi.org/10.1016/j.cell.2019.03.046)

    • Search Google Scholar
    • Export Citation
  • Liu L, Yang X, Li NF, Lin L & Luo H 2019b circ_0015756 promotes proliferation, invasion and migration by microRNA-7-dependent inhibition of FAK in hepatocellular carcinoma. Cell Cycle 18 29392953. (https://doi.org/10.1080/15384101.2019.1664223)

    • Search Google Scholar
    • Export Citation
  • Liu R, Wang Q, Chang W, Zhou L, Li J & Zhang K 2019c Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions. European Journal of Dermatology 29 2938. (https://doi.org/10.1684/ejd.2018.3483)

    • Search Google Scholar
    • Export Citation
  • Liu Y, Hou J, Zhang M, Seleh-Zo E, Wang J, Cao B & An X 2019d circ-016910 sponges miR-574-5p to regulate cell physiology and milk synthesis via MAPK and PI3K/AKT-mTOR pathways in GMECs. Journal of Cellular Physiology 235 41984216. (https://doi.org/10.1002/jcp.29370)

    • Search Google Scholar
    • Export Citation
  • Lu TX & Rothenberg ME 2018 MicroRNA. Journal of Allergy and Clinical Immunology 141 12021207. (https://doi.org/10.1016/j.jaci.2017.08.034)

    • Search Google Scholar
    • Export Citation
  • Luo H, Liang H, Chen Y, Chen S, Xu Y, Xu L, Liu J, Zhou K, Peng J, Guo G, et al. 2018 miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone. Chemico-Biological Interactions 283 8490. (https://doi.org/10.1016/j.cbi.2018.01.019)

    • Search Google Scholar
    • Export Citation
  • McGee EA & Hsueh AJ 2000 Initial and cyclic recruitment of ovarian follicles. Endocrine Reviews 21 2002 14. (https://doi.org/10.1210/edrv.21.2.0394)

    • Search Google Scholar
    • Export Citation
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al. 2013 Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495 33333 8. (https://doi.org/10.1038/nature11928)

    • Search Google Scholar
    • Export Citation
  • Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P & Wu M 2017 circRNA: functions and properties of a novel potential biomarker for cancer. Molecular Cancer 16 94. (https://doi.org/10.1186/s12943-017-0663-2)

    • Search Google Scholar
    • Export Citation
  • Miller WL, Shafiee-Kermani F, Strahl BD & Huang HJ 2002 The nature of FSH induction by GnRH. Trends in Endocrinology and Metabolism 13 2572 63. (https://doi.org/10.1016/s1043-2760(0200614-8)

    • Search Google Scholar
    • Export Citation
  • Mohr AM & Mott JL 2015 Overview of microRNA biology. Seminars in Liver Disease 35 311. (https://doi.org/10.1055/s-0034-1397344)

  • Noguchi K, Arita J, Nagamoto A, Hosaka M & Kimura F 1996 A quantitative analysis of testosterone action on FSH secretion from individual pituitary cells using the cell immunoblot assay. Journal of Endocrinology 148 4274 33. (https://doi.org/10.1677/joe.0.1480427)

    • Search Google Scholar
    • Export Citation
  • Piwecka M, Glazar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, et al. 2017 Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357 eaam8526. (https://doi.org/10.1126/science.aam8526)

    • Search Google Scholar
    • Export Citation
  • Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K & Li H 2015 Circular RNA: a new star of noncoding RNAs. Cancer Letters 365 14114 8. (https://doi.org/10.1016/j.canlet.2015.06.003)

    • Search Google Scholar
    • Export Citation
  • Qu S, Liu Z, yang X, Zhou J, Yu H, Zhang R & Li H 2018 The emerging functions and roles of circular RNAs in cancer. Cancer Letters 414 301309. (https://doi.org/10.1016/j.canlet.2017.11.022)

    • Search Google Scholar
    • Export Citation
  • Quan G & Li J 2018 Circular RNAs: biogenesis, expression and their potential roles in reproduction. Journal of Ovarian Research 11 9. (https://doi.org/10.1186/s13048-018-0381-4)

    • Search Google Scholar
    • Export Citation
  • Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al. 2015 Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell 58 8708 8 5. (https://doi.org/10.1016/j.molcel.2015.03.027)

    • Search Google Scholar
    • Export Citation
  • Salzman J, Chen RE, Olsen MN, Wang PL & Brown PO 2013 Cell-type specific features of circular RNA expression. PLoS Genetics 9 e1003777. (https://doi.org/10.1371/journal.pgen.1003777)

    • Search Google Scholar
    • Export Citation
  • Shang Q, Yang Z, Jia R & Ge S 2019 The novel roles of circRNAs in human cancer. Molecular Cancer 18 6. (https://doi.org/10.1186/s12943-018-0934-6)

  • Sheng X, Bao Y, Zhang JS, Li M, Li YN, Xu QN, Zhang SH & Li CT 2018 Research progress on InDel genetic marker in forensic science. Fa Yi Xue Za Zhi 34 420427. (https://doi.org/10.12116/j.issn.1004-5619.2018.04.016)

    • Search Google Scholar
    • Export Citation
  • Shih JC, Lin HH, Hsiao AC, Su YT, Tsai S, Chien CL & Kung HN 2019 Unveiling the role of microRNA-7 in linking TGF-beta-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion. FASEB Journal 33 62816295. (https://doi.org/10.1096/fj.201801898RR)

    • Search Google Scholar
    • Export Citation
  • Simoni M, Weinbauer GF, Gromoll J & Nieschlag E 1999 Role of FSH in male gonadal function. Annales d’Endocrinologie 60 10210 6.

  • Su H, Tao T, Yang Z, Kang X, Zhang X, Kang D, Wu S & Li C 2019 Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Molecular Cancer 18 27. (https://doi.org/10.1186/s12943-019-0951-0)

    • Search Google Scholar
    • Export Citation
  • Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, zhou H, et al. 2006 FSH directly regulates bone mass. Cell 125 2472 60. (https://doi.org/10.1016/j.cell.2006.01.051)

    • Search Google Scholar
    • Export Citation
  • Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC & Salzman J 2015 Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biology 16 126. (https://doi.org/10.1186/s13059-015-0690-5)

    • Search Google Scholar
    • Export Citation
  • Tian S, Liu X, Fan Q, Ma J, Yao L & Li Y 2019 Microarray expression and functional analysis of circular RNAs in the glomeruli of NZB/W F1 mice with lupus nephritis. Experimental and Therapeutic Medicine 18 28132824. (https://doi.org/10.3892/etm.2019.7901)

    • Search Google Scholar
    • Export Citation
  • Ulloa-Aguirre A, Midgley AR, Beitins IZ & Padmanabhan V 1995 Follicle-stimulating isohormones: characterization and physiological relevance. Endocrine Reviews 16 7657 87. (https://doi.org/10.1210/edrv-16-6-765)

    • Search Google Scholar
    • Export Citation
  • Wan S, Wang J, Wang J, Wu J, Song J, Zhang CY, Zhang C, Wang C & Wang JJ 2017 Increased serum miR-7 is a promising biomarker for type 2 diabetes mellitus and its microvascular complications. Diabetes Research and Clinical Practice 130 171179. (https://doi.org/10.1016/j.diabres.2017.06.005)

    • Search Google Scholar
    • Export Citation
  • Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, et al. 2016 A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal 37 260226 11. (https://doi.org/10.1093/eurheartj/ehv713)

    • Search Google Scholar
    • Export Citation
  • Wang CJ, Guo HX, Han DX, Yu ZW, Zheng Y, Jiang H, Gao Y, Yuan B & Zhang JB 2019a Pituitary tissue-specific miR-7a-5p regulates FSH expression in rat anterior adenohypophyseal cells. PeerJ 7 e6458. (https://doi.org/10.7717/peerj.6458)

    • Search Google Scholar
    • Export Citation
  • Wang F, Chen X, Han Y, Xi S & Wu G 2019b circRNA CDR1 as regulated the proliferation of human periodontal ligament stem cells under a lipopolysaccharide-induced inflammatory condition. Mediators of Inflammation 2019 1625381. (https://doi.org/10.1155/2019/1625381)

    • Search Google Scholar
    • Export Citation
  • Wei X, Li H, Yang J, Hao D, Dong D, Huang Y, Lan X, Plath M, Lei C, Lin F, et al. 2017 Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death and Disease 8 e3153. (https://doi.org/10.1038/cddis.2017.541)

    • Search Google Scholar
    • Export Citation
  • Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin HMA, Ma Y & Goel A 2017 Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clinical Cancer Research 23 39183928. (https://doi.org/10.1158/1078-0432.CCR-16-2541)

    • Search Google Scholar
    • Export Citation
  • Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, De Bruijn E, Horvitz HR, Kauppinen S & Plasterk RH 2005 MicroRNA expression in zebrafish embryonic development. Science 309 31031 1. (https://doi.org/10.1126/science.1114519)

    • Search Google Scholar
    • Export Citation
  • Wu W, Liu S, Liang Y, Zhou Z & Liu X 2017 miR-7 inhibits progression of hepatocarcinoma by targeting KLF-4 and promises a novel diagnostic biomarker. Cancer Cell International 17 31. (https://doi.org/10.1186/s12935-017-0386-x)

    • Search Google Scholar
    • Export Citation
  • Wu L, Xia J, Yang J, Shi Y, Xia H, Xiang X & Yu X 2018 circ-ZNF609 promotes migration of colorectal cancer by inhibiting Gli1 expression via microRNA-150. Journal of BUON 23 13431349.

    • Search Google Scholar
    • Export Citation
  • Wu F, Han B, Wu S, Yang L, Leng S, Li M, Liao J, Wang G, Ye Q, Zhang Y, et al. 2019a Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. Journal of Neuroscience 39 73697393. (https://doi.org/10.1523/JNEUROSCI.0299-19.2019)

    • Search Google Scholar
    • Export Citation
  • Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y, Huang K, Wang G, Wang J, Ma J, et al. 2019b Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Molecular Cancer 18 73. (https://doi.org/10.1186/s12943-019-1007-1)

    • Search Google Scholar
    • Export Citation
  • Xia J, Cao T, Ma C, Shi Y, Sun Y, Wang ZP & Ma J 2018 miR-7 suppresses tumor progression by directly targeting MAP3K9 in pancreatic cancer. Molecular Therapy: Nucleic Acids 13 121132. (https://doi.org/10.1016/j.omtn.2018.08.012)

    • Search Google Scholar
    • Export Citation
  • Xu H, Guo S, li W & Yu P 2015 The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Scientific Reports 5 12453. (https://doi.org/10.1038/srep12453)

    • Search Google Scholar
    • Export Citation
  • Xue D, Wang H, Chen Y, Shen D, Lu J, Wang M, Zebibula A, Xu L, Wu H, Li G, et al. 2019 circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals. Molecular Cancer 18 151. (https://doi.org/10.1186/s12943-019-1072-5)

    • Search Google Scholar
    • Export Citation
  • Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, et al. 2017a A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death and Differentiation 24 16091620. (https://doi.org/10.1038/cdd.2017.86)

    • Search Google Scholar
    • Export Citation
  • Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al. 2017b Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Research 27 626641. (https://doi.org/10.1038/cr.2017.31)

    • Search Google Scholar
    • Export Citation
  • Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu, Gupta S, Yang W & Yang BB 2017c The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Molecular Therapy 25 20622074. (https://doi.org/10.1016/j.ymthe.2017.05.022)

    • Search Google Scholar
    • Export Citation
  • Yang R, Xing L, Zheng X, Sun Y, Wang X & Chen J 2019 The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression. Molecular Cancer 18 4. (https://doi.org/10.1186/s12943-018-0933-7)

    • Search Google Scholar
    • Export Citation
  • Yates LA, Norbury CJ & Gilbert RJ 2013 The long and short of microRNA. Cell 153 51651 9. (https://doi.org/10.1016/j.cell.2013.04.003)

  • You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, et al. 2015 Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nature Neuroscience 18 603610. (https://doi.org/10.1038/nn.3975)

    • Search Google Scholar
    • Export Citation
  • Yu J, Xu QG, Wang ZG, Yang Y, Zhang L, Ma JZ, Sun SH, Yang F & Zhou WP 2018 Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. Journal of Hepatology 68 12141227. (https://doi.org/10.1016/j.jhep.2018.01.012)

    • Search Google Scholar
    • Export Citation
  • Yuan B, Song Y, Sheng Y, Zheng K, Huo Q, Xu X & Zou H 2016 Luminescence and energy-transfer properties of color-tunable Ca2Mg0.25Al1.5Si1.25O7:Ce(3+)/Eu(2+)/Tb(3+) phosphors for ultraviolet light-emitting diodes. Luminescence 31 4534 61. (https://doi.org/10.1002/bio.2981)

    • Search Google Scholar
    • Export Citation
  • Yuan W, Zhou R, Wang J, Han J, Yang X, Yu H, Lu H, Zhang X, Li P, Tao J, et al. 2019 Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Molecular Oncology 13 15591576. (https://doi.org/10.1002/1878-0261.12523)

    • Search Google Scholar
    • Export Citation
  • Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, Liu X, Sun H, Pan Y & Wang S 2018 The pro-metastasis effect of circANKS1B in breast cancer. Molecular Cancer 17 160. (https://doi.org/10.1186/s12943-018-0914-x)

    • Search Google Scholar
    • Export Citation
  • Zhang L, Zhang X, Zhang X, Lu Y, Li L & Cui S 2017a miRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. Journal of Endocrinology 234 114. (https://doi.org/10.1530/JOE-16-0488)

    • Search Google Scholar
    • Export Citation
  • Zhang X, Zhang X, Hu S, Zheng M, Zhang J, Zhao J, Zhang X, Yan B, Jia L, Zhao J, et al. 2017b Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Research 45 59305944. (https://doi.org/10.1093/nar/gkx317)

    • Search Google Scholar
    • Export Citation
  • Zhang L, Zhou Q, Qiu Q, Hou L, Wu M, Li J, Li X, Lu B, Cheng X, Liu P, et al. 2019a circPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Molecular Cancer 18 144. (https://doi.org/10.1186/s12943-019-1080-5)

    • Search Google Scholar
    • Export Citation
  • Zhang S, Liao K, Miao Z, Wang Q, Miao Y, Guo Z, Qiu Y, Chen B, Ren L, Wei Z, et al. 2019b circFOXO3 promotes glioblastoma progression by acting as a competing endogenous RNA for NFAT5. Neuro-Oncology 21 12841296. (https://doi.org/10.1093/neuonc/noz128)

    • Search Google Scholar
    • Export Citation
  • Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J, et al. 2019c Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Molecular Cancer 18 20. (https://doi.org/10.1186/s12943-018-0935-5)

    • Search Google Scholar
    • Export Citation
  • Zhao ZJ & Shen J 2017 Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biology 14 514521. (https://doi.org/10.1080/15476286.2015.1122162)

    • Search Google Scholar
    • Export Citation
  • Zhen N, Gu S, Ma J, Zhu J, Yin M, Xu M, Wang J, Huang N, Cui Z, Bian Z, et al. 2019 circHMGCS1 promotes hepatoblastoma cell proliferation by regulating the IGF signaling pathway and glutaminolysis. Theranostics 9 900919. (https://doi.org/10.7150/thno.29515)

    • Search Google Scholar
    • Export Citation
  • Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L & Chen J 2017 Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Letters 403 305317. (https://doi.org/10.1016/j.canlet.2017.06.027)

    • Search Google Scholar
    • Export Citation
  • Zhou S, Jiang H, Li M, Wu P, Sun L, Liu Y, Zhu K, Zhang B, Sun G, Cao C, et al. 2019 Circular RNA hsa_circ_0016070 is associated with pulmonary arterial hypertension by promoting PASMC proliferation. Molecular Therapy: Nucleic Acids 18 275284. (https://doi.org/10.1016/j.omtn.2019.08.026)

    • Search Google Scholar
    • Export Citation
  • Zhu Y, Pan W, Yang T, Meng X, Jiang Z, Tao L & Wang L 2019 Upregulation of circular RNA circNFIB attenuates cardiac fibrosis by sponging miR-433. Frontiers in Genetics 10 564. (https://doi.org/10.3389/fgene.2019.00564)

    • Search Google Scholar
    • Export Citation