TUG is a calpain-10 substrate involved in the translocation of GLUT4 in adipocytes

in Journal of Molecular Endocrinology
View More View Less
  • 1 Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
  • 2 Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, México

Correspondence should be addressed to A M Salazar: anamsm@biomedicas.unam.mx
Restricted access

The calpain-10 (CAPN10) protease is implicated in the translocation of the glucose transporter 4 (GLUT4), which is retained in the Golgi matrix via the Tether containing a UBX domain for GLUT4 (TUG) protein. Insulin stimulation induces the proteolytic processing of TUG, which leads to the translocation of GLUT4 to the cell membrane. We tested whether TUG is a CAPN10 substrate. Proteolysis of TUG by calpains was assessed using a cell-free system containing calpain-1 and TUG. In situ proteolysis of TUG by calpains was demonstrated in 3T3-L1 adipocytes in the presence of insulin or calpain inhibitors to modulate calpain activity. Proteolysis of TUG by CAPN10 was confirmed using transient or stable silencing of CAPN10 in 3T3-L1 adipocytes. Calpains proteolyzed the C-terminus of TUG in vitro. In adipocytes, insulin-induced cleavage of TUG was correlated with the activation of calpains. Treatment with calpain inhibitors reduced TUG cleavage, resulting in impaired GLUT4 translocation without altering Akt phosphorylation. Furthermore, CAPN10 but not calpain-1 or calpain-2 colocalized with GLUT4 in the absence of insulin, and their colocalization was reduced after stimulation with insulin. Finally, we demonstrated that CAPN10 knockdown reduced the proteolysis of TUG without altering the phosphorylation of Akt or the expression of the Usp25m protease. Thus, our results provide evidence that the TUG protein is cleaved by CAPN10 to regulate GLUT4 translocation.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 456 456 119
Full Text Views 38 38 18
PDF Downloads 30 30 10
  • Arnandis T, Ferrer-Vicens I, Torres L, García C, Garcia-Trevijano ER, Zaragoza R & Viña JR 2014 Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochemical Journal 459 355368. (https://doi.org/10.1042/BJ20130847)

    • Search Google Scholar
    • Export Citation
  • Belman JP, Habtemichael EN & Bogan JS 2014 A proteolytic pathway that controls glucose uptake in fat and muscle. Reviews in Endocrine and Metabolic Disorders 15 5566. (https://doi.org/10.1007/s11154-013-9276-2)

    • Search Google Scholar
    • Export Citation
  • Bodhini D, Radha V, Ghosh S, Sanapala KR, Majumder PP, Rao MRS & Mohan V 2011 Association of calpain 10 gene polymorphisms with type 2 diabetes mellitus in southern Indians. Metabolism: Clinical and Experimental 60 681688. (https://doi.org/10.1016/j.metabol.2010.07.001)

    • Search Google Scholar
    • Export Citation
  • Bogan JS 2012 Regulation of glucose transporter translocation in health and diabetes. Annual Review of Biochemistry 81 507532. (https://doi.org/10.1146/annurev-biochem-060109-094246)

    • Search Google Scholar
    • Export Citation
  • Bogan JS & Kandror KV 2010 Biogenesis and regulation of insulin-responsive vesicles containing GLUT4. Current Opinion in Cell Biology 22 506512. (https://doi.org/10.1016/j.ceb.2010.03.012)

    • Search Google Scholar
    • Export Citation
  • Bogan JS, Rubin BR, Yu C, Löffler MG, Orme CM, Belman JP, McNally LJ, Hao M & Cresswell JA 2012 Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation. Journal of Biological Chemistry 287 2393223947. (https://doi.org/10.1074/jbc.M112.339457)

    • Search Google Scholar
    • Export Citation
  • Brown AE, Yeaman SJ & Walker M 2007 Targeted suppression of calpain-10 expression impairs insulin-stimulated glucose uptake in cultured primary human skeletal muscle cells. Molecular Genetics and Metabolism 91 318324. (https://doi.org/10.1016/j.ymgme.2007.05.001)

    • Search Google Scholar
    • Export Citation
  • De Tullio R, Franchi A, Martines A, Averna M, Pedrazzi M, Melloni E & Sparatore B 2018 Unexpected role of the L-domain of calpastatin during the autoproteolytic activation of human erythrocyte calpain. Bioscience Reports 38 20180147. (https://doi.org/10.1042/BSR20180147)

    • Search Google Scholar
    • Export Citation
  • Du M, Li X, Li Z, Shen Q, Wang Y, Li G & Zhang D 2018 Phosphorylation regulated by protein kinase A and alkaline phosphatase play positive roles in μ-calpain activity. Food Chemistry 252 3339. (https://doi.org/10.1016/j.foodchem.2018.01.103)

    • Search Google Scholar
    • Export Citation
  • DuVerle D, Takigawa I, Ono Y, Sorimachi H & Mamitsuka H 2010 CaMPDB: a resource for calpain and modulatory proteolysis. Genome Informatics 22 202213. (https://doi.org/10.1142/9781848165786_0017)

    • Search Google Scholar
    • Export Citation
  • Fazakerley DJ, Naghiloo S, Chaudhuri R, Koumanov F, Burchfield JG, Thomas KC, Krycer JR, Prior MJ, Parker BL, Murrow BA, 2015 Proteomic analysis of GLUT4 storage vesicles reveals tumor suppressor candidate 5 (TUSC5) as a novel regulator of insulin action in adipocytes. Journal of Biological Chemistry 290 2352823542. (https://doi.org/10.1074/jbc.M115.657361)

    • Search Google Scholar
    • Export Citation
  • Giguere CJ, Covington MD & Schnellmann RG 2008 Mitochondrial calpain 10 activity and expression in the kidney of multiple species. Biochemical and Biophysical Research Communications 366 258262. (https://doi.org/10.1016/j.bbrc.2007.11.133)

    • Search Google Scholar
    • Export Citation
  • Grumelli C, Berghuis P, Pozzi D, Caleo M, Antonucci F, Bonanno G, Carmignoto G, Benedek MB, Harkany T, Matteoli M, 2008 Calpain activity contributes to the control of SNAP-25 levels in neurons. Molecular and Cellular Neurosciences 39 314323. (https://doi.org/10.1016/j.mcn.2008.07.011)

    • Search Google Scholar
    • Export Citation
  • Habtemichael EN, Li DT, Alcázar-Román A, Westergaard XO, Li M, Petersen MC, Li H, DeVries SG, Li E, Julca-Zevallos O, 2018 Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes. Journal of Biological Chemistry 293 1046610486. (https://doi.org/10.1074/jbc.RA118.003021)

    • Search Google Scholar
    • Export Citation
  • Hoffstedt J, Näslund E & Arner P 2002 Calpain-10 gene polymorphism is associated with reduced beta(3)-adrenoceptor function in human fat cells. Journal of Clinical Endocrinology and Metabolism 87 33623367. (https://doi.org/10.1210/jcem.87.7.8680)

    • Search Google Scholar
    • Export Citation
  • Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, 2000 Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genetics 26 163175. (https://doi.org/10.1038/79876)

    • Search Google Scholar
    • Export Citation
  • Klip A, Sun Y, Chiu TT & Foley KP 2014 Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. American Journal of Physiology: Cell Physiology 306 C879C886. (https://doi.org/10.1152/ajpcell.00069.2014)

    • Search Google Scholar
    • Export Citation
  • Mendoza PA, Silva P, Díaz J, Arriagada C, Canales J, Cerda O & Torres VA 2018 Calpain2 mediates Rab5-driven focal adhesion disassembly and cell migration. Cell Adhesion and Migration 12 185194. (https://doi.org/10.1080/19336918.2017.1377388)

    • Search Google Scholar
    • Export Citation
  • Ono Y, Saido TC & Sorimachi H 2016 Calpain research for drug discovery: challenges and potential. Nature Reviews: Drug Discovery 15 854876. (https://doi.org/10.1038/nrd.2016.212)

    • Search Google Scholar
    • Export Citation
  • Otani K, Han DH, Ford EL, Garcia-Roves PM, Ye H, Horikawa Y, Bell GI, Holloszy JO & Polonsky KS 2004 Calpain system regulates muscle mass and glucose transporter GLUT4 turnover. Journal of Biological Chemistry 279 2091520920. (https://doi.org/10.1074/jbc.M400213200)

    • Search Google Scholar
    • Export Citation
  • Pánico P, Salazar AM, Burns AL & Ostrosky-Wegman P 2014 Role of calpain-10 in the development of diabetes mellitus and its complications. Archives of Medical Research 45 103115. (https://doi.org/10.1016/j.arcmed.2014.01.005)

    • Search Google Scholar
    • Export Citation
  • Pánico P, Juárez-Nájera A, Iturriaga-Goyon E, Ostrosky-Wegman P & Salazar AM 2019 Arsenic impairs GLUT1 trafficking through the inhibition of the calpain system in lymphocytes. Toxicology and Applied Pharmacology 380 114700. (https://doi.org/10.1016/j.taap.2019.114700)

    • Search Google Scholar
    • Export Citation
  • Paul DS, Harmon AW, Winston CP & Patel YM 2003 Calpain facilitates GLUT4 vesicle translocation during insulin-stimulated glucose uptake in adipocytes. Biochemical Journal 376 625632. (https://doi.org/10.1042/BJ20030681)

    • Search Google Scholar
    • Export Citation
  • Perez-Martinez P, Delgado-Lista J, Garcia-Rios A, Ferguson JF, Gulseth HL, Williams CM, Karlström B, Kieć-Wilk B, Blaak EE, Helal O, 2011 Calpain-10 interacts with plasma saturated fatty acid concentrations to influence insulin resistance in individuals with the metabolic syndrome. American Journal of Clinical Nutrition 93 11361141. (https://doi.org/10.3945/ajcn.110.010512)

    • Search Google Scholar
    • Export Citation
  • Rosser BG, Powers SP & Gores GJ 1993 Calpain activity increases in hepatocytes following addition of ATP. Demonstration by a novel fluorescent approach. Journal of Biological Chemistry 268 2359323600.

    • Search Google Scholar
    • Export Citation
  • Salazar AM, Pánico P, Burns AL, Díaz-Villaseñor A, Torres-Arellano JM, Juárez-Nájera A, González-Pimienta RE, Alvarez-Sekely AM, Zacarías-Castillo R & Ostrosky-Wegman P 2019 Calpain activity in leukocytes is associated with diabetes biochemical markers. Archives of Medical Research 50 451460. (https://doi.org/10.1016/j.arcmed.2019.11.009)

    • Search Google Scholar
    • Export Citation
  • Seremwe M, Schnellmann RG & Bollag WB 2015 Calpain-10 activity underlies angiotensin II-induced aldosterone production in an adrenal glomerulosa cell model. Endocrinology 156 21382149. (https://doi.org/10.1210/en.2014-1866)

    • Search Google Scholar
    • Export Citation
  • Shima Y, Nakanishi K, Odawara M, Kobayashi T & Ohta H 2003 Association of the SNP-19 genotype 22 in the calpain-10 gene with elevated body mass index and hemoglobin A1c levels in Japanese. Clinica Chimica Acta 336 8996. (https://doi.org/10.1016/S0009-8981(03)00320-6)

    • Search Google Scholar
    • Export Citation
  • Shinkai-Ouchi F, Koyama S, Ono Y, Hata S, Ojima K, Shindo M, DuVerle D, Ueno M, Kitamura F, Doi N, 2016 Predictions of cleavability of calpain proteolysis by quantitative structure-activity relationship analysis using newly determined cleavage sites and catalytic efficiencies of an oligopeptide array. Molecular and Cellular Proteomics 15 12621280. (https://doi.org/10.1074/mcp.M115.053413)

    • Search Google Scholar
    • Export Citation
  • Song Y, Niu T, Manson JE, Kwiatkowski DJ & Liu S 2004 Are variants in the CAPN10 gene related to risk of type 2 diabetes? A quantitative assessment of population and family-based association studies. American Journal of Human Genetics 74 208222. (https://doi.org/10.1086/381400)

    • Search Google Scholar
    • Export Citation
  • Sorimachi H, Hata S & Ono Y 2011 Calpain chronicle – an enzyme family under multidisciplinary characterization. Proceedings of the Japan Academy: Series B, Physical and Biological Sciences 87 287327. (https://doi.org/10.2183/pjab.87.287)

    • Search Google Scholar
    • Export Citation
  • Sorimachi H, Mamitsuka H & Ono Y 2012 Understanding the substrate specificity of conventional calpains. Biological Chemistry 393 853871. (https://doi.org/10.1515/hsz-2012-0143)

    • Search Google Scholar
    • Export Citation
  • Sreenan SK, Zhou YP, Otani K, Hansen PA, Currie KP, Pan CY, Lee JP, Ostrega DM, Pugh W, Horikawa Y, 2001 Calpains play a role in insulin secretion and action. Diabetes 50 20132020. (https://doi.org/10.2337/diabetes.50.9.2013)

    • Search Google Scholar
    • Export Citation
  • Svensson L, McDowall A, Giles KM, Stanley P, Feske S & Hogg N 2010 Calpain 2 controls turnover of LFA-1 adhesions on migrating T lymphocytes. PLoS ONE 5 e15090. (https://doi.org/10.1371/journal.pone.0015090)

    • Search Google Scholar
    • Export Citation
  • McDonough A, Veiras LC, Minas JN & Ralph DL 2014 Considerations when quantitating protein abundance by immunoblot. American Journal of Physiology: Cell Physiology 308 C426C433. (https://doi.org/10.1152/ajpcell.00400.2014)

    • Search Google Scholar
    • Export Citation
  • Weedon MN, Schwarz PEH, Horikawa Y, Iwasaki N, Illig T, Holle R, Rathmann W, Selisko T, Schulze J, Owen KR, 2003 Meta-analysis and a large association study confirm a role for calpain-10 variation in Type 2 diabetes susceptibility. American Journal of Human Genetics 73 12081212. (https://doi.org/10.1086/379285)

    • Search Google Scholar
    • Export Citation
  • Yu C, Cresswell J, Löffler MG & Bogan JS 2007 The glucose transporter 4-regulating protein TUG is essential for highly insulin-responsive glucose uptake in 3T3-L1 adipocytes. Journal of Biological Chemistry 282 77107722. (https://doi.org/10.1074/jbc.M610824200)

    • Search Google Scholar
    • Export Citation
  • Zebisch K, Voigt V, Wabitsch M & Brandsch M 2012 Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Analytical Biochemistry 425 8890. (https://doi.org/10.1016/j.ab.2012.03.005)

    • Search Google Scholar
    • Export Citation
  • Zhou L, Jedrychowski MP, Pilch PF, Kandror KV, Gartner CA, Gygi SP & Herz J 2009 Proteomic analysis of GLUT4 storage vesicles reveals LRP1 to be an important vesicle component and target of insulin signaling. Journal of Biological Chemistry 285 104114. (https://doi.org/10.1074/jbc.M109.040428)

    • Search Google Scholar
    • Export Citation