Pancreatic islet beta cell-specific deletion of G6pc2 reduces fasting blood glucose

in Journal of Molecular Endocrinology

Correspondence should be addressed to R M O’Brien: richard.obrien@vanderbilt.edu
Restricted access

The G6PC1, G6PC2 and G6PC3 genes encode distinct glucose-6-phosphatase catalytic subunit (G6PC) isoforms. In mice, germline deletion of G6pc2 lowers fasting blood glucose (FBG) without affecting fasting plasma insulin (FPI) while, in isolated islets, glucose-6-phosphatase activity and glucose cycling are abolished and glucose-stimulated insulin secretion (GSIS) is enhanced at submaximal but not high glucose. These observations are all consistent with a model in which G6PC2 regulates the sensitivity of GSIS to glucose by opposing the action of glucokinase. G6PC2 is highly expressed in human and mouse islet beta cells however, various studies have shown trace G6PC2 expression in multiple tissues raising the possibility that G6PC2 also affects FBG through non-islet cell actions. Using real-time PCR we show here that expression of G6pc1 and/or G6pc3 are much greater than G6pc2 in peripheral tissues, whereas G6pc2 expression is much higher than G6pc3 in both pancreas and islets with G6pc1 expression not detected. In adult mice, beta cell-specific deletion of G6pc2 was sufficient to reduce FBG without changing FPI. In addition, electronic health record-derived phenotype analyses showed no association between G6PC2 expression and phenotypes clearly unrelated to islet function in humans. Finally, we show that germline G6pc2 deletion enhances glycolysis in mouse islets and that glucose cycling can also be detected in human islets. These observations are all consistent with a mechanism by which G6PC2 action in islets is sufficient to regulate the sensitivity of GSIS to glucose and hence influence FBG without affecting FPI.

Supplementary Materials

    • Supplemental Material
    • Supplemental Table 1 Checklist for Reporting Human Islet Preparations Used in Research Adapted from Hart NJ, Powers AC (2018) Progress, challenges, and suggestions for using human islets to understand islet biology and human diabetes. Diabetologia https://doi.org/10.1007/s00125-018-4772-2 NR, not recorded;

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 682 682 541
Full Text Views 40 40 34
PDF Downloads 23 23 21
  • American Diabetes Association 2019 2. Classification and diagnosis of diabetes: standards of medical care in Diabetes-2019. Diabetes Care 42 S13S28. (https://doi.org/10.2337/dc19-S002)

    • Search Google Scholar
    • Export Citation
  • ArdenSDZahnTSteegersSWebbSBergmanBO’BrienRMHuttonJC 1999 Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. Diabetes 48 531542. (https://doi.org/10.2337/diabetes.48.3.531)

    • Search Google Scholar
    • Export Citation
  • AshcroftSJWeerasingheLCBassettJMRandlePJ 1972 The pentose cycle and insulin release in mouse pancreatic islets. Biochemical Journal 126 525532. (https://doi.org/10.1042/bj1260525)

    • Search Google Scholar
    • Export Citation
  • BaerenwaldDABonnefondABouatia-NajiNFlemmingBPUmunakweOCOeserJKPoundLDConleyNLCauchiSLobbensSet al. 2013 Multiple functional polymorphisms in the G6PC2 gene contribute to the association with higher fasting plasma glucose levels. Diabetologia 56 13061316. (https://doi.org/10.1007/s00125-013-2875-3)

    • Search Google Scholar
    • Export Citation
  • Bouatia-NajiNRocheleauGVan LommelLLemaireKSchuitFCavalcanti-ProencaCMarchandMHartikainenALSovioUDe GraeveFet al. 2008 A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320 10851088. (https://doi.org/10.1126/science.1156849)

    • Search Google Scholar
    • Export Citation
  • BoullingAAbrantesAMassonECooperDNRobaszkiewiczMChenJMFerecC 2016 Discovery and functional annotation of PRSS1 promoter variants in chronic pancreatitis. Human Mutation 37 11491152. (https://doi.org/10.1002/humu.23053)

    • Search Google Scholar
    • Export Citation
  • BousteadJNMartinCCOeserJKSvitekCAHunterSIHuttonJCO’BrienRM 2004 Identification and characterization of a cDNA and the gene encoding the mouse ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein. Journal of Molecular Endocrinology 32 3353. (https://doi.org/10.1677/jme.0.0320033)

    • Search Google Scholar
    • Export Citation
  • BreretonMFIberlMShimomuraKZhangQAdriaenssensAEProksPSpiliotisIIDaceWMattisKKRamracheyaRet al. 2014 Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications 5 4639. (https://doi.org/10.1038/ncomms5639)

    • Search Google Scholar
    • Export Citation
  • BrunzellJDRobertsonRPLernerRLHazzardWREnsinckJWBiermanELPorteDJr 1976 Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. Journal of Clinical Endocrinology and Metabolism 42 222229. (https://doi.org/10.1210/jcem-42-2-222)

    • Search Google Scholar
    • Export Citation
  • ChenWMErdosMRJacksonAUSaxenaRSannaSSilverKDTimpsonNJHansenTOrruMGrazia PirasMet al. 2008 Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. Journal of Clinical Investigation 118 26202628. (https://doi.org/10.1172/JCI34566)

    • Search Google Scholar
    • Export Citation
  • ChouJYMansfieldBC 2008 Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease. Human Mutation 29 921930. (https://doi.org/10.1002/humu.20772)

    • Search Google Scholar
    • Export Citation
  • ConradEDaiCSpaethJGuoMCyphertHAScovilleDCarrollJYuWMGoodrichLVHarlanDMet al. 2016 The MAFB transcription factor impacts islet alpha-cell function in rodents and represents a unique signature of primate islet beta-cells. American Journal of Physiology: Endocrinology and Metabolism 310 E91E102. (https://doi.org/10.1152/ajpendo.00285.2015)

    • Search Google Scholar
    • Export Citation
  • CoutinhoMGersteinHCWangYYusufS 1999 The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22 233240. (https://doi.org/10.2337/diacare.22.2.233)

    • Search Google Scholar
    • Export Citation
  • DECODE 2003 Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? Diabetes Care 26 688696. (https://doi.org/10.2337/diacare.26.3.688)

    • Search Google Scholar
    • Export Citation
  • DennyJCRitchieMDBasfordMAPulleyJMBastaracheLBrown-GentryKWangDMasysDRRodenDMCrawfordDC 2010 PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26 12051210. (https://doi.org/10.1093/bioinformatics/btq126)

    • Search Google Scholar
    • Export Citation
  • DennyJCCrawfordDCRitchieMDBielinskiSJBasfordMABradfordYChaiHSBastaracheLZuvichRPeissigPet al. 2011 Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome- and phenome-wide studies. American Journal of Human Genetics 89 529542. (https://doi.org/10.1016/j.ajhg.2011.09.008)

    • Search Google Scholar
    • Export Citation
  • DennyJCBastaracheLRitchieMDCarrollRJZinkRMosleyJDFieldJRPulleyJMRamirezAHBowtonEet al. 2013 Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nature Biotechnology 31 11021110. (https://doi.org/10.1038/nbt.2749)

    • Search Google Scholar
    • Export Citation
  • GerinIVeiga-da-CunhaMAchouriYColletJFVan SchaftingenE 1997 Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Letters 419 235238. (https://doi.org/10.1016/s0014-5793(97)01463-4)

    • Search Google Scholar
    • Export Citation
  • HalbanPAPolonskyKSBowdenDWHawkinsMALingCMatherKJPowersACRhodesCJSusselLWeirGC 2014 beta-Cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37 17511758. (https://doi.org/10.2337/dc14-0396)

    • Search Google Scholar
    • Export Citation
  • HuttonJCEisenbarthGS 2003 A pancreatic beta-cell-specific homolog of glucose-6-phosphatase emerges as a major target of cell-mediated autoimmunity in diabetes. PNAS 100 86268628. (https://doi.org/10.1073/pnas.1633447100)

    • Search Google Scholar
    • Export Citation
  • HuttonJCO’BrienRM 2009 Glucose-6-phosphatase catalytic subunit gene family. Journal of Biological Chemistry 284 2924129245. (https://doi.org/10.1074/jbc.R109.025544)

    • Search Google Scholar
    • Export Citation
  • IynedjianPB 2009 Molecular physiology of mammalian glucokinase. Cellular and Molecular Life Sciences 66 2742. (https://doi.org/10.1007/s00018-008-8322-9)

    • Search Google Scholar
    • Export Citation
  • KaytonNSPoffenbergerGHenskeJDaiCThompsonCAramandlaRShostakANicholsonWBrissovaMBushWSet al. 2015 Human islet preparations distributed for research exhibit a variety of insulin secretory profiles. American Journal of Physiology: Endocrinology and Metabolism 308 E592E602. (https://doi.org/10.1152/ajpendo.00437.2014)

    • Search Google Scholar
    • Export Citation
  • KhawKTWarehamNLubenRBinghamSOakesSWelchADayN 2001 Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European prospective investigation of cancer and nutrition (EPIC-Norfolk). BMJ 322 1518. (https://doi.org/10.1136/bmj.322.7277.15)

    • Search Google Scholar
    • Export Citation
  • KuGMKimHVaughnIWHangauerMJMyung OhCGermanMSMcManusMT 2012 Research resource: RNA-Seq reveals unique features of the pancreatic beta-cell transcriptome. Molecular Endocrinology 26 17831792. (https://doi.org/10.1210/me.2012-1176)

    • Search Google Scholar
    • Export Citation
  • LawesCMParagVBennettDASuhILamTHWhitlockGBarziFWoodwardM & Asia Pacific Cohort Studies Collaboration 2004 Blood glucose and risk of cardiovascular disease in the Asia Pacific region. Diabetes Care 27 28362842. (https://doi.org/10.2337/diacare.27.12.2836)

    • Search Google Scholar
    • Export Citation
  • Le MarechalCMassonEChenJMMorelFRuszniewskiPLevyPFerecC 2006 Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nature Genetics 38 13721374. (https://doi.org/10.1038/ng1904)

    • Search Google Scholar
    • Export Citation
  • LeiKJShellyLLPanCJSidburyJBChouJY 1993 Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262 580583. (https://doi.org/10.1126/science.8211187)

    • Search Google Scholar
    • Export Citation
  • LivakKJSchmittgenTD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • MartinCCBischofLJBergmanBHornbuckleLAHillikerCFrigeriCWahlDSvitekCAWongRGoldmanJKet al. 2001 Cloning and characterization of the human and rat islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) genes. Journal of Biological Chemistry 276 2519725207. (https://doi.org/10.1074/jbc.M101549200)

    • Search Google Scholar
    • Export Citation
  • MatschinskyFMWilsonDF 2019 The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Frontiers in Physiology 10 148. (https://doi.org/10.3389/fphys.2019.00148)

    • Search Google Scholar
    • Export Citation
  • MorganCRLazarowAL 1963 Immunoassay of insulin: two antibody system: plasma insulin of normal, subdiabetic, and diabetic rats. Diabetes 12 115126. (https://doi.org/10.2337/diab.12.2.115)

    • Search Google Scholar
    • Export Citation
  • PanCJChenSYJunHSLinSRMansfieldBCChouJY 2011 SLC37A1 and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters. PLoS ONE 6 e23157. (https://doi.org/10.1371/journal.pone.0023157)

    • Search Google Scholar
    • Export Citation
  • PetrolonisAJYangQTumminoPJFishSMPrackAEJainSParsonsTFLiPDalesNAGeLet al. 2004 Enzymatic characterization of the pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP). Journal of Biological Chemistry 279 1397613983. (https://doi.org/10.1074/jbc.M307756200)

    • Search Google Scholar
    • Export Citation
  • PoundLDOeserJKO’BrienTPWangYFaulmanCJDadiPKJacobsonDAHuttonJCMcGuinnessOPShiotaMet al. 2013 G6PC2: a negative regulator of basal glucose-stimulated insulin secretion. Diabetes 62 15471556. (https://doi.org/10.2337/db12-1067)

    • Search Google Scholar
    • Export Citation
  • PulleyJClaytonEBernardGRRodenDMMasysDR 2010 Principles of human subjects protections applied in an opt-out, de-identified biobank. Clinical and Translational Science 3 4248. (https://doi.org/10.1111/j.1752-8062.2010.00175.x)

    • Search Google Scholar
    • Export Citation
  • RitchieMDDennyJCZuvichRLCrawfordDCSchildcroutJSBastaracheLRamirezAHMosleyJDPulleyJMBasfordMAet al. 2013 Genome- and phenome-wide analyses of cardiac conduction identifies markers of arrhythmia risk. Circulation 127 13771385. (https://doi.org/10.1161/CIRCULATIONAHA.112.000604)

    • Search Google Scholar
    • Export Citation
  • RodenDMPulleyJMBasfordMABernardGRClaytonEWBalserJRMasysDR 2008 Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clinical Pharmacology and Therapeutics 84 362369. (https://doi.org/10.1038/clpt.2008.89)

    • Search Google Scholar
    • Export Citation
  • RooyackersOENairKS 1997 Hormonal regulation of human muscle protein metabolism. Annual Review of Nutrition 17 457485. (https://doi.org/10.1146/annurev.nutr.17.1.457)

    • Search Google Scholar
    • Export Citation
  • ShameerKDennyJCDingKJouniHCrosslinDRde AndradeMChuteCGPeissigPPachecoJALiRet al. 2014 A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Human Genetics 133 95109. (https://doi.org/10.1007/s00439-013-1355-7)

    • Search Google Scholar
    • Export Citation
  • ShellyLLLeiKJPanCJSakataSFRuppertSSchutzGChouJY 1993 Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A. Journal of Biological Chemistry 268 2148221485.

    • Search Google Scholar
    • Export Citation
  • ShiYLiYWangJWangCFanJZhaoJYinLLiuXZhangDLiL 2017 Meta-analyses of the association of G6PC2 allele variants with elevated fasting glucose and type 2 diabetes. PLoS ONE 12 e0181232. (https://doi.org/10.1371/journal.pone.0181232)

    • Search Google Scholar
    • Export Citation
  • ShiehJJPanCJMansfieldBCChouJY 2003 A glucose-6-phosphate hydrolase, widely expressed outside the liver, can explain age-dependent resolution of hypoglycemia in glycogen storage disease type Ia. Journal of Biological Chemistry 278 4709847103. (https://doi.org/10.1074/jbc.M309472200)

    • Search Google Scholar
    • Export Citation
  • SoranzoNSannaSWheelerEGiegerCRadkeDDupuisJBouatia-NajiNLangenbergCProkopenkoIStolermanEet al. 2010 Common variants at ten genomic loci influence hemoglobin A1C levels via glycemic and non-glycemic pathways. Diabetes 59 32293239. (https://doi.org/10.2337/db10-0502)

    • Search Google Scholar
    • Export Citation
  • Stolovich-RainMEnkJVikesaJNielsenFCSaadaAGlaserBDorY 2015 Weaning triggers a maturation step of pancreatic beta cells. Developmental Cell 32 535545. (https://doi.org/10.1016/j.devcel.2015.01.002)

    • Search Google Scholar
    • Export Citation
  • SyringKEBoortzKAOeserJKUstioneAPlattKAShadoanMKMcGuinnessOPPistonDWPowellDRO’BrienRM 2016 Combined deletion of Slc30a7 and Slc30a8 unmasks a critical role for ZnT8 in glucose-stimulated insulin secretion. Endocrinology 157 45344541. (https://doi.org/10.1210/en.2016-1573)

    • Search Google Scholar
    • Export Citation
  • Tamarit-RodriguezJIdahlLAGineEAlcazarOSehlinJ 1998 Lactate production in pancreatic islets. Diabetes 47 12191223. (https://doi.org/10.2337/diab.47.8.1219)

    • Search Google Scholar
    • Export Citation
  • ThorensBTarussioDMaestroMARoviraMHeikkiläEFerrerJ 2015 Ins1(Cre) knock-in mice for beta cell-specific gene recombination. Diabetologia 58 558565. (https://doi.org/10.1007/s00125-014-3468-5)

    • Search Google Scholar
    • Export Citation
  • Veiga-da-CunhaMChevalierNStephenneXDefourJPPacziaNFersterAAchouriYDewulfJPLinsterCLBommerGTet al. 2019 Failure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency. PNAS 116 12411250. (https://doi.org/10.1073/pnas.1816143116)

    • Search Google Scholar
    • Export Citation
  • WallMLPoundLDTrenaryIO’BrienRMYoungJD 2015 Novel stable isotope analyses demonstrate significant rates of glucose cycling in mouse pancreatic islets. Diabetes 64 21292137. (https://doi.org/10.2337/db14-0745)

    • Search Google Scholar
    • Export Citation
  • WangHIynedjianPB 1997 Modulation of glucose responsiveness of insulinoma beta-cells by graded overexpression of glucokinase. PNAS 94 43724377. (https://doi.org/10.1073/pnas.94.9.4372)

    • Search Google Scholar
    • Export Citation
  • WangYMartinCCOeserJKSarkarSMcGuinnessOPHuttonJCO’BrienRM 2007 Deletion of the gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen results in a mild metabolic phenotype. Diabetologia 50 774778. (https://doi.org/10.1007/s00125-006-0564-1)

    • Search Google Scholar
    • Export Citation
  • WangZYorkNWNicholsCGRemediMS 2014 Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metabolism 19 872882. (https://doi.org/10.1016/j.cmet.2014.03.010)

    • Search Google Scholar
    • Export Citation
  • WeirGCBonner-WeirS 2004 Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53 (Supplement 3) S16S21. (https://doi.org/10.2337/diabetes.53.suppl_3.s16)

    • Search Google Scholar
    • Export Citation
  • XinYKimJOkamotoHNiMWeiYAdlerCMurphyAJYancopoulosGDLinCGromadaJ 2016 RNA sequencing of single human islet cells reveals Type 2 diabetes genes. Cell Metabolism 24 608615. (https://doi.org/10.1016/j.cmet.2016.08.018)

    • Search Google Scholar
    • Export Citation
  • YaghootkarHFraylingTM 2013 Recent progress in the use of genetics to understand links between type 2 diabetes and related metabolic traits. Genome Biology 14 203. (https://doi.org/10.1186/gb-2013-14-3-203)

    • Search Google Scholar
    • Export Citation