LncRNA profile in Hashimoto’s thyroiditis and potential function of NONHSAT079547.2

in Journal of Molecular Endocrinology
View More View Less
  • 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China

Correspondence should be addressed to W Teng: twp@vip.163.com
Restricted access

Hashimoto’s thyroiditis (HT) is a common organ-specific autoimmune disease, which develops in 0.3–1.5/1000 subjects annually. The aims of this study were to determine the lncRNA profile in peripheral blood CD4+ T cells from HT patients and then to characterize the potential function of NONHSAT079547.2. A total of 37 HT patients and 50 sex- and age-matched healthy controls were enrolled for high-throughput sequencing. Another 43 HT patients and 50 sex- and age-matched controls were enrolled for validation via real-time PCR. Flow cytometry and CCK8 assays were used to measure cell apoptosis and growth levels. Western blotting was used for measuring the expression of growth- and apoptosis-associated proteins. IL-17 serum concentration and transcriptional level in CD4+ T cells of participants were detected by ELISA and real-time PCR, respectively. The mechanism of competitive endogenous RNA was determined using real-time PCR, ELISA, RNA immunoprecipitation, and dual-luciferase assays in Jurkat cells. A total of 7564 significantly differentially expressed lncRNAs were found, of which 3913 lncRNAs were upregulated and 3651 lncRNAs were downregulated in HT group when compared to control group. NONHSAT079547.2 was significantly upregulated in HT patients and was positively correlated with serum thyroid peroxidase antibody level. Further studies confirmed that NONHSAT079547.2 could promote cell growth and control IL-17 expression and secretion via the NONHSAT079547.2/miR-4716-5p/IL-17 axis.This is the first study to describe the lncRNA profile in CD4+ T cells of HT patients. The studies on the function of NONHSAT079547.2 might elucidate the underlying molecular mechanisms and represent potential biomarkers for HT.

Supplementary Materials

    • Supplementary figure 1. Correlations between NONHSAT079547.2 expression and clinical characteristics in the healthy control group (n=50). The correlations were determined by the Pearson rank correlation method.
    • Supplementary figure 2. The real-time PCR results of IL-17 and miR-4716-5p for the three shRNAs. Data are presented as mean &#x00B1; SD, analyzed by Dunnett&#x2019;s t-test. Data were obtained from three independent experiments. *P < 0.05, **P < 0.01.
    • Supplementary Table 1. The number of sequencing reads and the number of reads aligned with the reference genome
    • Supplementary Table 2. CT values of real-time PCR

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1093 1093 68
Full Text Views 25 25 1
PDF Downloads 13 13 0
  • Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A & Fallahi P 2015 Autoimmune thyroid disorders. Autoimmunity Reviews 14 174180. (https://doi.org/10.1016/j.autrev.2014.10.016)

    • Search Google Scholar
    • Export Citation
  • Aune TM, Crooke PS 3rd, Patrick AE, Tossberg JT, Olsen NJ & Spurlock CF 3rd 2017 Expression of long non-coding RNAs in autoimmunity and linkage to enhancer function and autoimmune disease risk genetic variants. Journal of Autoimmunity 81 99109. (https://doi.org/10.1016/j.jaut.2017.03.014)

    • Search Google Scholar
    • Export Citation
  • Catana CS, Berindan Neagoe I, Cozma V, Magdas C, Tabaran F & Dumitrascu DL 2015 Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology 21 58235830. (https://doi.org/10.3748/wjg.v21.i19.5823)

    • Search Google Scholar
    • Export Citation
  • Covarrubias S, Robinson EK, Shapleigh B, Vollmers A, Katzman S, Hanley N, Fong N, Mcmanus MT & Carpenter S 2017 CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-kappaB reporter. Journal of Biological Chemistry 292 2091120920. (https://doi.org/10.1074/jbc.M117.799155)

    • Search Google Scholar
    • Export Citation
  • Deng Y, Luan S, Zhang Q & Xiao Y 2018 Long noncoding RNA THRIL contributes in lipopolysaccharide-induced HK-2 cells injury by sponging miR-34a.Journal of Cellular Biochemistry 120 14441456. (https://doi.org/10.1002/jcb.27354)

    • Search Google Scholar
    • Export Citation
  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al. 2012 The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research 22 17751789. (https://doi.org/10.1101/gr.132159.111)

    • Search Google Scholar
    • Export Citation
  • Fouser LA, Wright JF, Dunussi-Joannopoulos K & Collins M 2008 Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunological Reviews 226 87102. (https://doi.org/10.1111/j.1600-065X.2008.00712.x)

    • Search Google Scholar
    • Export Citation
  • Guarneri F & Benvenga S 2007 Environmental factors and genetic background that interact to cause autoimmune thyroid disease. Current Opinion in Endocrinology, Diabetes, and Obesity 14 398409. (https://doi.org/10.1097/MED.0b013e3282ef1c48)

    • Search Google Scholar
    • Export Citation
  • Hangauer MJ, Vaughn IW & Mcmanus MT 2013 Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genetics 9 e1003569. (https://doi.org/10.1371/journal.pgen.1003569)

    • Search Google Scholar
    • Export Citation
  • Hur K, Kim SH & kim JM 2019 Potential implications of long noncoding RNAs in autoimmune diseases.Immune Network 19 e4. (https://doi.org/10.4110/in.2019.19.e4)

    • Search Google Scholar
    • Export Citation
  • Isailovic N, Daigo K, Mantovani A & Selmi C 2015 Interleukin-17 and innate immunity in infections and chronic inflammation. Journal of Autoimmunity 60 111. (https://doi.org/10.1016/j.jaut.2015.04.006)

    • Search Google Scholar
    • Export Citation
  • Koga T, Ichinose K, Kawakami A & Tsokos GC 2019 The role of IL-17 in systemic lupus erythematosus and its potential as a therapeutic target. Expert Review of Clinical Immunology 15 629637. (https://doi.org/10.1080/1744666X.2019.1593141)

    • Search Google Scholar
    • Export Citation
  • Konca Degertekin C, Aktas Yilmaz B, Balos Toruner F, Kalkanci A, Turhan Iyidir O, Fidan I, Yesilyurt E, Cakir N, Kustimur S & Arslan M 2016 Circulating Th17 cytokine levels are altered in Hashimoto’s thyroiditis. Cytokine 80 1317. (https://doi.org/10.1016/j.cyto.2016.02.011)

    • Search Google Scholar
    • Export Citation
  • Kotkowska A, Sewerynek E, Domanska D, Pastuszak-Lewandoska D & Brzezianska E 2015 Single nucleotide polymorphisms in the STAT3 gene influence AITD susceptibility, thyroid autoantibody levels, and IL6 and IL17 secretion. Cellular and Molecular Biology Letters 20 88101. (https://doi.org/10.1515/cmble-2015-0004)

    • Search Google Scholar
    • Export Citation
  • Krueger JG, Wharton KA, Schlitt T, Suprun M, Torene RI, Jiang X, Wang CQ, Fuentes-Duculan J, Hartmann N, Peters T, et al. 2019 IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. Journal of Allergy and Clinical Immunology 144 750763. (https://doi.org/10.1016/j.jaci.2019.04.029)

    • Search Google Scholar
    • Export Citation
  • Kurte M, Luz-Crawford P, Vega-Letter AM, Contreras RA, Tejedor G, Elizondo-Vega R, Martinez-Viola L, Fernandez-O’ryan C, Figueroa FE, Jorgensen C, et al. 2018 IL17/IL17RA as a novel signaling axis driving mesenchymal stem cell therapeutic function in experimental autoimmune encephalomyelitis. Frontiers in Immunology 9 802. (https://doi.org/10.3389/fimmu.2018.00802)

    • Search Google Scholar
    • Export Citation
  • Li M, Xie Z, Cai Z, Su F, Zheng G, Li J, Wang S, Cen S, Liu W, Tang S, et al. 2019a lncRNA-mRNA expression profiles and functional networks of mesenchymal stromal cells involved in monocyte regulation. Stem Cell Research and Therapy 10 207. (https://doi.org/10.1186/s13287-019-1306-x)

    • Search Google Scholar
    • Export Citation
  • Li Q, Wang B, Mu K & Zhang JA 2019b The pathogenesis of thyroid autoimmune diseases: new T lymphocytes – cytokines circuits beyond the Th1-Th2 paradigm. Journal of Cellular Physiology 234 22042216. (https://doi.org/10.1002/jcp.27180)

    • Search Google Scholar
    • Export Citation
  • Luty J, Ruckemann-Dziurdzinska K, Witkowski JM & Bryl E 2019 Immunological aspects of autoimmune thyroid disease – complex interplay between cells and cytokines. Cytokine 116 128133. (https://doi.org/10.1016/j.cyto.2019.01.003)

    • Search Google Scholar
    • Export Citation
  • Man HJ & Marsden PA 2019 LncRNAs and epigenetic regulation of vascular endothelium: genome positioning system and regulators of chromatin modifiers. Current Opinion in Pharmacology 45 7280. (https://doi.org/10.1016/j.coph.2019.04.012)

    • Search Google Scholar
    • Export Citation
  • Messemaker TC, Chadli L, Cai G, Goelela VS, Boonstra M, Dorjee AL, Andersen SN, Mikkers HMM, Van ‘T Hof P, Mei H, et al. 2018 Antisense long non-coding RNAs are deregulated in skin tissue of patients with systemic sclerosis. Journal of Investigative Dermatology 138 826835. (https://doi.org/10.1016/j.jid.2017.09.053)

    • Search Google Scholar
    • Export Citation
  • Mohammadi FS, Aslani S, Mostafaei S, Jamshidi A, Riahi P & Mahmoudi M 2019 Are genetic variations in IL-21-IL-23R-IL-17A cytokine axis involved in a pathogenic pathway of rheumatoid arthritis? Bayesian hierarchical meta-analysis. Journal of Cellular Physiology 234 1715917171. (https://doi.org/10.1002/jcp.28495)

    • Search Google Scholar
    • Export Citation
  • Peng H, Liu Y, Tian J, Ma J, Tang X, Rui K, Tian X, Mao C, Lu L, Xu H, et al. 2015 The long noncoding RNA IFNG-AS1 promotes T Helper type 1 cells response in patients with Hashimoto’s thyroiditis. Scientific Reports 5 17702. (https://doi.org/10.1038/srep17702)

    • Search Google Scholar
    • Export Citation
  • Pyzik A, Grywalska E, Matyjaszek-Matuszek B & Rolinski J 2015 Immune disorders in Hashimoto’s thyroiditis: what do we know so far? Journal of Immunology Research 2015 979167. (https://doi.org/10.1155/2015/979167)

    • Search Google Scholar
    • Export Citation
  • Qiao C, Yang L, Wan J, Liu X, Pang C, You W & Zhao G 2019 Long noncoding RNA ANRIL contributes to the development of ulcerative colitis by miR-323b-5p/TLR4/MyD88/NF-kappaB pathway. Biochemical and Biophysical Research Communications 508 217224. (https://doi.org/10.1016/j.bbrc.2018.11.100)

    • Search Google Scholar
    • Export Citation
  • Ragusa F, Fallahi P, Elia G, Gonnella D, Paparo SR, Giusti C, Churilov LP, Ferrari SM & Antonelli A 2019 Hashimotos’ thyroiditis: epidemiology, pathogenesis, clinic and therapy. Best Practice and Research: Clinical Endocrinology and Metabolism 33 101367. (https://doi.org/10.1016/j.beem.2019.101367)

    • Search Google Scholar
    • Export Citation
  • Salmena L, Poliseno L, Tay Y, Kats L & Pandolfi PP 2011 A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146 353358. (https://doi.org/10.1016/j.cell.2011.07.014)

    • Search Google Scholar
    • Export Citation
  • Shan Z, Chen L, Lian X, Liu C, Shi B, Shi L, Tong N, Wang S, Weng J, Zhao J, et al. 2016 Iodine status and prevalence of thyroid disorders after introduction of mandatory universal salt iodization for 16 years in China: a cross-sectional study in 10 cities. Thyroid 26 11251130. (https://doi.org/10.1089/thy.2015.0613)

    • Search Google Scholar
    • Export Citation
  • Sigdel KR, Cheng A, Wang Y, Duan L & Zhang Y 2015 The emerging functions of long noncoding RNA in immune cells: autoimmune diseases. Journal of Immunology Research 2015 848790. (https://doi.org/10.1155/2015/848790)

    • Search Google Scholar
    • Export Citation
  • Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, Wang D, Zhao X, Huang A, Xiang Z, et al. 2017 LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Reports 18 18011816. (https://doi.org/10.15252/embr.201643668)

    • Search Google Scholar
    • Export Citation
  • Tong H, Zhuang X, Cai J, Ding Y, Si Y, Zhang H & Shen M 2019 Long noncoding RNA ZFAS1 promotes progression of papillary thyroid carcinoma by sponging miR-590-3p and upregulating HMGA2 expression. OncoTargets and Therapy 12 75017512. (https://doi.org/10.2147/OTT.S209138)

    • Search Google Scholar
    • Export Citation
  • Wright MW & Bruford EA 2011 Naming ‘junk’: human non-protein coding RNA (ncRNA) gene nomenclature. Human Genomics 5 9098. (https://doi.org/10.1186/1479-7364-5-2-90)

    • Search Google Scholar
    • Export Citation
  • Wu GC, Pan HF, Leng RX, Wang DG, Li XP, Li XM & Ye DQ 2015 Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmunity Reviews 14 798805. (https://doi.org/10.1016/j.autrev.2015.05.004)

    • Search Google Scholar
    • Export Citation
  • Wu DM, Wang S, Wen X, Han XR, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ, et al. 2018 LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma. Cell Death and Disease 9 947. (https://doi.org/10.1038/s41419-018-0975-1)

    • Search Google Scholar
    • Export Citation
  • Zhang P, Cao L, Zhou R, Yang X & Wu M 2019 The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nature Communications 10 1495. (https://doi.org/10.1038/s41467-019-09482-6)

    • Search Google Scholar
    • Export Citation
  • Zhou Y, Li M, Xue Y, Li Z, Wen W, Liu X, Ma Y, Zhang L, Shen Z & Cao X 2019 Interferon-inducible cytoplasmic lncLrrc55-AS promotes antiviral innate responses by strengthening IRF3 phosphorylation. Cell Research 29 641654. (https://doi.org/10.1038/s41422-019-0193-0)

    • Search Google Scholar
    • Export Citation