Sex differences in progesterone-induced relaxation in the coronary bed from normotensive rats

in Journal of Molecular Endocrinology

Correspondence should be addressed to R L dos Santos: rogerlyrio@hotmail.com
Restricted access

Progesterone seems to play a role in cardiovascular physiology since its receptors are expressed on endothelial cells from both sexes of mammals. However, little is known about its role on the coronary circulation. Thus, this study aims to evaluate the effect of acute administration of progesterone on the coronary bed and the endothelial pathways involved in this action in normotensive rats of both sexes. A dose–response curve of progesterone (1–50 μmol/L) in isolated hearts using the Langendorff preparation was performed. Baseline coronary perfusion pressure (CPP) was determined, and the vasoactive effect of progesterone was evaluated before and after infusion with Nω-nitro-L-arginine methyl ester (L-NAME), indomethacin, catalase, and Tiron. The analysis of nitric oxide (NO) and superoxide anion (O2 · ) was performed by DAF-2DA and DHE, respectively. Female group showed higher CPP. Nevertheless, progesterone promoted a similar relaxing response in both sexes. The use of L-NAME increased vasodilatory response in both sexes. When indomethacin was used, only the males showed a reduced relaxing response, and in the combined inhibition with L-NAME, indomethacin, and catalase, or with the use of Tiron, only the females presented reduced responses. NO and O2 ·− production has increased in female group, while the male group has increased only NO production. Our results suggest that progesterone is able to modulate vascular reactivity in coronary vascular bed with a vasodilatory response in both sexes. These effects seem to be, at least in part, mediated by different endothelial pathways, involving NO and EDH pathways in females and NO and prostanoids pathways in males.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 228 228 32
Full Text Views 18 18 6
PDF Downloads 8 8 3
  • BarbagalloMDominguezLJLicataGShanJBingLKarpinskiEPangPKTResnickLM 2001 Vascular effects of progesterone: role of cellular calcium regulation. Hypertension 142147. (https://doi.org/10.1161/01.HYP.37.1.142)

    • Search Google Scholar
    • Export Citation
  • BenjaminEJViraniSSCallawayCWChamberlainAMChangARChengSChiuveSECushmanMDellingFNDeoR 2018 Heart disease and stroke statistics – 2018 update: a report from the American Heart Association. Circulation e67e492. (https://doi.org/10.1161/CIR.0000000000000558)

    • Search Google Scholar
    • Export Citation
  • BergerVBeierSElgerWMüllerUStockG 1992 Influence of different progestogens on blood pressure of non-anaesthetized male spontaneously hypertensive rats. Contraception 8397. (https://doi.org/10.1016/0010-7824(92)90134-F)

    • Search Google Scholar
    • Export Citation
  • CairrãoEAlvarezECarvasJMSantos-SilvaAJVerdeI 2012 Non-genomic vasorelaxant effects of 17β-estradiol and progesterone in rat aorta are mediated by L-type Ca2+ current inhibition. Acta Pharmacologica Sinica 615624. (https://doi.org/10.1038/aps.2012.4)

    • Search Google Scholar
    • Export Citation
  • CampbellWBHarderDR 2001 Prologue: EDHF–what is it? American Journal of Physiology: Heart and Circulatory Physiology H2413H2416. (https://doi.org/10.1152/ajpheart.2001.280.6.H2413)

    • Search Google Scholar
    • Export Citation
  • CONCEA MCT 2016 Normativas Do CONCEA Para Produção Manutenção de Animais Em Atividades de Ensino Ou Pesquisa Científica: Lei Decreto Portarias Resoluções Normativas e Orientações Técnicas. Brasília.

    • Search Google Scholar
    • Export Citation
  • CrewsJKKhalilRA 1999 Antagonistic effects of 17-estradiol, progesterone, and testosterone on Ca 2 entry mechanisms of coronary vasoconstriction. Arteriosclerosis Thrombosis and Vascular Biology 10341040. (https://doi.org/10.1161/01.ATV.19.4.1034)

    • Search Google Scholar
    • Export Citation
  • CutiniPSellésJMassheimerV 2009 Cross-talk between rapid and long term effects of progesterone on vascular tissue. Journal of Steroid Biochemistry and Molecular Biology 3643. (https://doi.org/10.1016/j.jsbmb.2009.02.014)

    • Search Google Scholar
    • Export Citation
  • CutiniPHCampeloAEMassheimerVL 2014 Differential regulation of endothelium behavior by progesterone and medroxyprogesterone acetate. Journal of Endocrinology 179193. (https://doi.org/10.1530/JOE-13-0263)

    • Search Google Scholar
    • Export Citation
  • DebortoliARRouverWDNDelgadoNTBMengalVClaudioERGPernomianLBendhackLMMoysésMRSantosRLD 2017 GPER modulates tone and coronary vascular reactivity in male and female rats. Journal of Molecular Endocrinology 171180. (https://doi.org/10.1530/JME-16-0117)

    • Search Google Scholar
    • Export Citation
  • FaraciFMDidionSP 2004 Vascular protection: superoxide dismutase isoforms in the vessel wall. Arteriosclerosis Thrombosis and Vascular Biology 13671373. (https://doi.org/10.1161/01.ATV.0000133604.20182.cf)

    • Search Google Scholar
    • Export Citation
  • Figueroa-ValverdeLFCedilloFDRamosMLCerveraEGQuijanoKCordobaJ 2011 Changes induced by estradiol-ethylenediamine derivative on perfusion pressure and coronary resistance in isolated rat heart: L-type calcium channel. Biomedical Papers of the Medical Faculty of the University Palacky Olomouc Czechoslovakia 2732. (https://doi.org/10.5507/bp.2011.018)

    • Search Google Scholar
    • Export Citation
  • GluaisPEdwardsGWestonAHVanhouttePMFélétouM 2005 Hydrogen peroxide and endothelium-dependent hyperpolarization in the guinea-pig carotid artery. European Journal of Pharmacology 219224. (https://doi.org/10.1016/j.ejphar.2005.02.042)

    • Search Google Scholar
    • Export Citation
  • GoldmanJMMurrASCooperRL 2007 The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Research: Part B Developmental and Reproductive Toxicology 8497. (https://doi.org/10.1002/bdrb.20106)

    • Search Google Scholar
    • Export Citation
  • HadiHARCarrCSAl SuwaidiJ 2005 Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascular Health and Risk Management 183198.

    • Search Google Scholar
    • Export Citation
  • IngegnoMDMoneySRThelmoWGreeneGLDavidianMJaffeBMPertschukLP 1988 Progesterone receptors in the human heart and great vessels. Laboratory Investigation 353356.

    • Search Google Scholar
    • Export Citation
  • KaurSBentonWLTongkhuyaSALopezCMCUphouseLAverittDL 2018 Sex Differences and Estrous Cycle Effects of Peripheral Serotonin-Evoked Rodent Pain Behaviors. Neuroscience 384 87100. (https://doi.org/10.1016/j.neuroscience.2018.05.017)

    • Search Google Scholar
    • Export Citation
  • KerrSBrosnanMJMcIntyreMReidJLDominiczakAFHamiltonCA 1999 Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 13531358. (https://doi.org/10.1161/01.HYP.33.6.1353)

    • Search Google Scholar
    • Export Citation
  • KnockGASnetkovVAShaiftaYConnollyMDrndarskiSNoahAPourmahramGEBeckerSAaronsonPIWardJPT 2009 Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization. Free Radical Biology and Medicine 633642. (https://doi.org/10.1016/J.FREERADBIOMED.2008.11.015)

    • Search Google Scholar
    • Export Citation
  • LaursenJBSomersMKurzSMccannLWarnholtzAFreemanBATarpeyMFukaiTHarrisonDG 2001 Endothelial regulation of vasomotion in ApoE-deficient mice implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 12821288. (https://doi.org/10.1161/01.CIR.103.9.1282)

    • Search Google Scholar
    • Export Citation
  • LiuYTerataKChaiQLiHKleinmanLHGuttermanDD 2002 Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles. Circulation Research 10701076. (https://doi.org/10.1161/01.RES.0000046003.14031.98)

    • Search Google Scholar
    • Export Citation
  • LiuYZhaoHLiHKalyanaramanBNicolosiACGuttermanDD 2003 Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circulation Research 573580. (https://doi.org/10.1161/01.RES.0000091261.19387.AE)

    • Search Google Scholar
    • Export Citation
  • LucchesiPABelmadaniSMatrouguiK 2005 Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mouse mesenteric resistance arteries. Journal of Hypertension 571579. (https://doi.org/10.1097/01.hjh.0000160214.40855.79)

    • Search Google Scholar
    • Export Citation
  • MarcondesFKBianchiFJTannoAP 2002 Determination of the estrous cycle phases of rats: some helpful considerations. Brazilian Journal of Biology 609614. (https://doi.org/10.1590/S1519-69842002000400008)

    • Search Google Scholar
    • Export Citation
  • MatobaTShimokawaHNakashimaMHirakawaYMukaiYHiranoKKanaideHTakeshitaA 2000 Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. Journal of Clinical Investigation 15211530. (https://doi.org/10.1172/JCI10506)

    • Search Google Scholar
    • Export Citation
  • MatobaTShimokawaHKubotaHMorikawaKFujikiTKunihiroIMukaiYHirakawaYTakeshitaA 2002 Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochemical and Biophysical Research Communications 909913. (https://doi.org/10.1006/BBRC.2001.6278)

    • Search Google Scholar
    • Export Citation
  • MatobaTShimokawaHMorikawaKKubotaHKunihiroIUrakami-HarasawaLMukaiYHirakawaYAkaikeTTakeshitaA 2003 Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arteriosclerosis Thrombosis and Vascular Biology 12241230. (https://doi.org/10.1161/01.ATV.0000078601.79536.6C)

    • Search Google Scholar
    • Export Citation
  • MccullochAIRandallMD 1998 Sex diferences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed. British Journal of Pharmacology 17001706. (https://doi.org/10.1038/sj.bjp.0701781)

    • Search Google Scholar
    • Export Citation
  • MendelsohnMEKarasRH 2005 Molecular and cellular basis of cardiovascular gender differences. Science 15831587. (https://doi.org/10.1126/science.1112062)

    • Search Google Scholar
    • Export Citation
  • MinshallRDPavcnikDBrowneDLHermsmeyerK 2002 Nongenomic vasodilator action of progesterone on primate coronary arteries. Journal of Applied Physiology 701708. (https://doi.org/10.1152/japplphysiol.00689.2001)

    • Search Google Scholar
    • Export Citation
  • MolinariCBattagliaAGrossiniEMaryDASGStokerJBSuricoNVaccaG 2001 The effect of progesterone on coronary blood flow in anaesthetized pigs. Experimental Physiology 101108. (https://doi.org/10.1113/eph8602076)

    • Search Google Scholar
    • Export Citation
  • MorelYRoucherFPlottonIGoursaudCTardyVMalletD 2016 Evolution of steroids during pregnancy: maternal, placental and fetal synthesis. Annales d’Endocrinologie 8289. (https://doi.org/10.1016/J.ANDO.2016.04.023)

    • Search Google Scholar
    • Export Citation
  • MorikawaKShimokawaHMatobaTKubotaHAkaikeTTalukderMAHHatanakaMFujikiTMaedaHTakahashiS 2003 Pivotal role of Cu,Zn-superoxide dismutase in endothelium dependent hyperpolarization. Journal of Clinical Investigation 18711879. (https://doi.org/10.1172/JCI19351)

    • Search Google Scholar
    • Export Citation
  • MoysésMRBarkerLACabralAM 2001 Sex hormone modulation of serotonin-induced coronary vasodilation in isolated heart. Brazilian Journal of Medical and Biological Research 949958. (https://doi.org/10.1590/S0100-879X2001000700014)

    • Search Google Scholar
    • Export Citation
  • MurphyJGKhalilRA 1999 Decreased [Ca(2+)](i) during inhibition of coronary smooth muscle contraction by 17beta-estradiol, progesterone, and testosterone. Journal of Pharmacology and Experimental Therapeutics 4452.

    • Search Google Scholar
    • Export Citation
  • NakanoYOshimaTMatsuuraHKajiyamaGKambeM 1998 Effect of 17β-estradiol on inhibition of platelet aggregation in vitro is mediated by an increase in NO synthesis. Arteriosclerosis Thrombosis and Vascular Biology 961967. (https://doi.org/10.1161/01.ATV.18.6.961)

    • Search Google Scholar
    • Export Citation
  • OrshalJMKhalilRA 2004 Gender, sex hormones, and vascular tone. American Journal of Physiology: Regulatory Integrative and Comparative Physiology R233R249. (https://doi.org/10.1152/ajpregu.00338.2003)

    • Search Google Scholar
    • Export Citation
  • PangYDongJThomasP 2015 Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor-α. American Journal of Physiology: Endocrinology and Metabolism E899E911. (https://doi.org/10.1152/ajpendo.00527.2014)

    • Search Google Scholar
    • Export Citation
  • Ramírez-RosasMBCobos-PucLESánchez-LópezAGutiérrez-LaraEJCenturiónD 2014 Pharmacological characterization of the mechanisms involved in the vasorelaxation induced by progesterone and 17β-estradiol on isolated canine basilar and internal carotid arteries. Steroids 3340. (https://doi.org/10.1016/j.steroids.2014.07.010)

    • Search Google Scholar
    • Export Citation
  • RosanoGMCSpoletiniIVitaleC 2017 Cardiovascular disease in women, is it different to men? The role of sex hormones. Climacteric 125128. (https://doi.org/10.1080/13697137.2017.1291780)

    • Search Google Scholar
    • Export Citation
  • RossRLSerockMRKhalilRA 2008 Experimental benefits of sex hormones on vascular function and the outcome of hormone therapy in cardiovascular disease. Current Cardiology Reviews 309322. (https://doi.org/10.2174/157340308786349462)

    • Search Google Scholar
    • Export Citation
  • RossettiMFCambiassoMJHolschbachMACabreraR 2016 Oestrogens and progestagens: synthesis and action in the brain. Journal of Neuroendocrinology 28 111. (https://doi.org/10.1111/jne.12402)

    • Search Google Scholar
    • Export Citation
  • RouverWNDelgadoNTBMenezesJBSantosRLMoysesMR 2015 Testosterone replacement therapy prevents alterations of coronary vascular reactivity caused by hormone deficiency induced by castration. PLoS ONE e0137111. (https://doi.org/10.1371/journal.pone.0137111)

    • Search Google Scholar
    • Export Citation
  • RupnowHLPhernettonTMShawCEModrickMLBirdIMMagnessRR 2001 Endothelial vasodilator production by uterine and systemic arteries. VII. Estrogen and progesterone effects on eNOS. American Journal of Physiology: Heart and Circulatory Physiology H1699H1705. (https://doi.org/10.1152/ajpheart.2001.280.4.H1699)

    • Search Google Scholar
    • Export Citation
  • SantosRLAbreuGRBissoliNSMoysésMR 2004 Endothelial mediators of 17β-estradiol-induced coronary vasodilation in the isolated rat heart. Brazilian Journal of Medical and Biological Research 569575. (https://doi.org/10.1590/S0100-879X2004000400014)

    • Search Google Scholar
    • Export Citation
  • SantosRLDa SilvaFBRibeiroRFStefanonI 2014 Sex hormones in the cardiovascular system. Hormone Molecular Biology and Clinical Investigation 89103. (https://doi.org/10.1515/hmbci-2013-0048)

    • Search Google Scholar
    • Export Citation
  • SantosRLLimaJTRouverWNMoysésMR 2016 Deficiency of sex hormones does not affect 17-β-estradiol-induced coronary vasodilation in the isolated rat heart. Brazilian Journal of Medical and Biological Research e5058. (https://doi.org/10.1590/1414-431X20165058)

    • Search Google Scholar
    • Export Citation
  • SatohMFujimotoSHarunaYArakawaSHorikeHKomaiNSasakiTTsujiokaKMakinoHKashiharaN 2005 NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. American Journal of Physiology: Renal Physiology F1144F1152. (https://doi.org/10.1152/ajprenal.00221.2004)

    • Search Google Scholar
    • Export Citation
  • ScotlandRSMadhaniMChauhanSMoncadaSAndresenJNilssonHHobbsAJAhluwaliaA 2005 Investigation of vascular responses in endothelial nitric oxide synthase/cyclooxygenase-1 double-knockout mice key role for endothelium-derived hyperpolarizing factor in the regulation of blood pressure in vivo. Circulation 796803. (https://doi.org/10.1161/01.CIR.0000155238.70797.4E)

    • Search Google Scholar
    • Export Citation
  • SellesJPoliniNAlvarezCMassheimerV 2001 Progesterone and 17-estradiol acutely stimulate nitric oxide synthase activity in rat aorta and inhibit platelet aggregation. Life Sciences 815827. (https://doi.org/10.1016/S0024-3205(01)01174-2)

    • Search Google Scholar
    • Export Citation
  • SellesJPoliniNAlvarezCMassheimerV 2002 Nongenomic action of progesterone in rat aorta: role of nitric oxide and prostaglandins. Cellular Signalling 431436. (https://doi.org/10.1016/S0898-6568(01)00265-0)

    • Search Google Scholar
    • Export Citation
  • ShimokawaHGodoS 2016 Diverse functions of endothelial NO synthases system: NO and EDH. Journal of Cardiovascular Pharmacology 361366. (https://doi.org/10.1097/FJC.0000000000000348)

    • Search Google Scholar
    • Export Citation
  • SilvaJFCapettiniLSAda SilvaJFPSales-JuniorPCruzJSCortesSFLemosVS 2016 Mechanisms of vascular dysfunction in acute phase of Trypanosoma cruzi infection in mice. Vascular Pharmacology 7381. (https://doi.org/10.1016/J.VPH.2016.03.002)

    • Search Google Scholar
    • Export Citation
  • SimonciniTMannellaPFornariLCarusoAWillisMYGaribaldiSBaldacciCGenazzaniAR 2004 Differential signal transduction of progesterone and medroxyprogesterone acetate in human endothelial cells. Endocrinology 57455756. (https://doi.org/10.1210/en.2004-0510)

    • Search Google Scholar
    • Export Citation
  • SimonciniTFuXDCarusoAGaribaldiSBaldacciCGirettiMSMannellaPFlaminiMISanchezAMGenazzaniAR 2007 Drospirenone increases endothelial nitric oxide synthesis via a combined action on progesterone and mineralocorticoid receptors. Human Reproduction 23252334. (https://doi.org/10.1093/humrep/dem109)

    • Search Google Scholar
    • Export Citation
  • StuehrDPouSRosenGM 2001 Oxygen reduction by nitric-oxide synthases. Journal of Biological Chemistry 1453314536. (https://doi.org/10.1074/jbc.R100011200)

    • Search Google Scholar
    • Export Citation
  • TangEHCVanhouttePM 2009 Prostanoids and reactive oxygen species: team players in endothelium-dependent contractions. Pharmacology and Therapeutics 140149. (https://doi.org/10.1016/J.PHARMTHERA.2009.02.006)

    • Search Google Scholar
    • Export Citation
  • TarafdarAPulaG 2018 The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. International Journal of Molecular Sciences 3824. (https://doi.org/10.3390/ijms19123824)

    • Search Google Scholar
    • Export Citation
  • ThompsonJKhalilRA 2003 Gender differences in the regulation of vascular tone. Clinical and Experimental Pharmacology and Physiology 115. (https://doi.org/10.1046/j.1440-1681.2003.03790.x)

    • Search Google Scholar
    • Export Citation
  • VázquezFRodríguez-ManzanequeJCLydonJPEdwardsDPO’MalleyBWIruela-ArispeML 1999 Progesterone regulates proliferation of endothelial cells. Journal of Biological Chemistry 21852192. (https://doi.org/10.1074/jbc.274.4.2185)

    • Search Google Scholar
    • Export Citation
  • WassmannKWassmannSNickenigG 2005 Progesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzyme expression and function. Circulation Research 10461054. (https://doi.org/10.1161/01.RES.0000188212.57180.55)

    • Search Google Scholar
    • Export Citation
  • WhealAJAlexanderSPHRandallMD 2012 Hydrogen peroxide as a mediator of vasorelaxation evoked by N-oleoylethanolamine and anandamide in rat small mesenteric arteries. European Journal of Pharmacology 384390. (https://doi.org/10.1016/J.EJPHAR.2011.11.033)

    • Search Google Scholar
    • Export Citation
  • XiuFAnipindiVCNguyenPVBoudreauJLiangHWanYSniderDPKaushicC 2016 High physiological concentrations of progesterone reverse estradiol-mediated changes in differentiation and functions of bone marrow derived dendritic cells. PLoS ONE e0153304. (https://doi.org/10.1371/journal.pone.0153304)

    • Search Google Scholar
    • Export Citation
  • ZouMHUllrichV 1996 Peroxynitrite formed by simultaneous generation of nitric oxide and superoxide selectively inhibits bovine aortic prostacyclin synthase. FEBS Letters 101104. (https://doi.org/10.1016/0014-5793(96)00160-3)

    • Search Google Scholar
    • Export Citation
  • ZouMHShiCCohenRA 2002 Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. Journal of Clinical Investigation 817826. (https://doi.org/10.1172/JCI14442)

    • Search Google Scholar
    • Export Citation