Butyrate modulates diabetes-linked gut dysbiosis: epigenetic and mechanistic modifications

in Journal of Molecular Endocrinology

Correspondence should be addressed to A A Eid: ae49@aub.edu.lb
Restricted access

Diabetic dysbiosis has been described as a novel key player in diabetes and diabetic complications. However, the cellular/molecular alterations associated with dysbiosis remain poorly characterized. For that, control, non-obese type 2 diabetic MKR mice and MKR mice treated with butyrate were used to delineate the epigenetic, cellular and molecular mechanisms by which dysbiosis associated with diabetes induces colon shortening and inflammation attesting to gastrointestinal disturbance. Our results show that dysbiosis is associated with T2DM and characterized by reduced Bacteroid fragilis population and butyrate-forming bacteria. The reduction of butyrate-forming bacteria and inadequate butyrate secretion result in alleviating HDAC3 inhibition and altering colon permeability. The observed changes are also associated with an increase in ROS production, a rise in NOX4 proteins, and a shift in the inflammatory markers, where IL-1β is increased and IL-10 and IL-17α are reduced. Treatment with butyrate restores the homeostatic levels of NOX4 and IL-1β. In summary, our data suggest that in T2DM, dysbiosis is associated with a reduction in butyrate content leading to increased HDAC3 activity. Butyrate treatment restores the homeostatic levels of the inflammatory markers and reduces ROS production known to mediate diabetes-induced colon disturbance. Taken together, our results suggest that butyrate could be a potential treatment to attenuate diabetic complications.

 

      Society for Endocrinology

All Time Past Year Past 30 Days
Abstract Views 119 119 83
Full Text Views 14 14 11
PDF Downloads 5 5 4
  • Al-ShabraweyMBartoliMEl-RemessyABMaGMatragoonSLemtalsiTCaldwellRWCaldwellRB 2008 Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Investigative Ophthalmology and Visual Science 3231–3238. (https://doi.org/10.1167/iovs.08-1754)

    • Search Google Scholar
    • Export Citation
  • AndersonJWBairdPDavisRHFerreriSKnudtsonMKoraymAWatersVWilliamsCL 2009 Health benefits of dietary fiber. Nutrition Reviews 188–205. (https://doi.org/10.1111/j.1753-4887.2009.00189.x)

    • Search Google Scholar
    • Export Citation
  • BanerjeeMSaxenaM 2012 Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clinica Chimica Acta: International Journal of Clinical Chemistry 1163–1170. (https://doi.org/10.1016/j.cca.2012.03.021)

    • Search Google Scholar
    • Export Citation
  • BereswillSFischerAPlickertRHaagLMOttoBKühlAADashtiJIZautnerAEMuñozMLoddenkemperC, 2011 Novel murine infection models provide deep insights into the ‘menage a trois’ of Campylobacter jejuni, microbiota and host innate immunity. PLoS ONE e20953. (https://doi.org/10.1371/journal.pone.0020953)

    • Search Google Scholar
    • Export Citation
  • BlakemoreAIFCoxAGonzalezAMMaskillJKHughesMEWilsonRMWardJDDuffGW 1996 Interleukin-1 receptor antagonist allele (ILIRN* 2) associated with nephropathy in diabetes mellitus. Human Genetics 369–374. (https://doi.org/10.1007/bf02185776)

    • Search Google Scholar
    • Export Citation
  • BlandinoGInturriRLazzaraFDi RosaMMalaguarneraL 2016 Impact of gut microbiota on diabetes mellitus. Diabetes and Metabolism 303–315. (https://doi.org/10.1016/j.diabet.2016.04.004)

    • Search Google Scholar
    • Export Citation
  • CananiRBDi CostanzoMDLeoneLPedataMMeliRCalignanoA 2011 Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology 1519–1528. (https://doi.org/10.3748/wjg.v17.i12.1519)

    • Search Google Scholar
    • Export Citation
  • CaniPDAmarJIglesiasMAPoggiMKnaufCBastelicaDNeyrinckAMFavaFTuohyKMChaboC, 2007 Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 1761–1772. (https://doi.org/10.2337/db06-1491)

    • Search Google Scholar
    • Export Citation
  • CaniPDOstoMGeurtsLEverardA 2012 Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 279–288. (https://doi.org/10.4161/gmic.19625)

    • Search Google Scholar
    • Export Citation
  • ChassaingBAitkenJDMalleshappaMVijay‐KumarM 2014 Dextran sulfate sodium (DSS)‐induced colitis in mice. Current Protocols in Immunology 15.25.1–15.25.14. (https://doi.org/10.1002/0471142735.im1525s104)

    • Search Google Scholar
    • Export Citation
  • ChenFLiXAquadroEHaighSZhouJSteppDWWeintraubNLBarmanSAFultonDJR 2016a Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radical Biology and Medicine 167–178. (https://doi.org/10.1016/j.freeradbiomed.2016.08.003)

    • Search Google Scholar
    • Export Citation
  • ChenWBGaoLWangJWangYGDongZZhaoJMiQSZhouL 2016b Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes. Oncotarget 57485–57497. (https://doi.org/10.18632/oncotarget.11295)

    • Search Google Scholar
    • Export Citation
  • ChenHRenXLiaoNWenF 2016c Th17 cell frequency and IL-17A concentrations in peripheral blood mononuclear cells and vitreous fluid from patients with diabetic retinopathy. Journal of International Medical Research 1403–1413. (https://doi.org/10.1177/0300060516672369)

    • Search Google Scholar
    • Export Citation
  • ChiaLWHornungBVHAalvinkSSchaapPJde VosWMKnolJBelzerC 2018 Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 859–873. (https://doi.org/10.1007/s10482-018-1040-x)

    • Search Google Scholar
    • Export Citation
  • ChoHSeokYLeeHSongMKimI 2018 Repression of transcriptional activity of forkhead Box O1 by histone deacetylase inhibitors ameliorates hyperglycemia in type 2 diabetic rats. International Journal of Molecular Sciences 3539. (https://doi.org/10.3390/ijms19113539)

    • Search Google Scholar
    • Export Citation
  • DaoMCEverardAAron-WisnewskyJSokolovskaNPriftiEVergerEOKayserBDLevenezFChillouxJHoylesL, 2016 Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 426–436. (https://doi.org/10.1136/gutjnl-2014-308778)

    • Search Google Scholar
    • Export Citation
  • DavieJR 2003 Inhibition of histone deacetylase activity by butyrate. Journal of Nutrition 2485S–2493S. (https://doi.org/10.1093/jn/133.7.2485S)

    • Search Google Scholar
    • Export Citation
  • DiriceENgRWSMartinezRHuJWagnerFFHolsonEBWagnerBKKulkarniRN 2017 Isoform-selective inhibitor of histone deacetylase 3 (HDAC3) limits pancreatic islet infiltration and protects female nonobese diabetic mice from diabetes. Journal of Biological Chemistry 17598–17608. (https://doi.org/10.1074/jbc.M117.804328)

    • Search Google Scholar
    • Export Citation
  • DonohoeDRCollinsLBWaliABiglerRSunWBultmanSJ 2012 The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Molecular Cell 612–626. (https://doi.org/10.1016/j.molcel.2012.08.033)

    • Search Google Scholar
    • Export Citation
  • Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B, Steppe M, Haesebrouck F, Sas B & Ducatelle R 2013 Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62 1745–1752. (https://doi.org/10.1136/gutjnl-2012-303611)

  • EidAAFordBMBhandaryBCavaglieryRBlockKBarnesJLGorinYChoudhuryGGAbboudHE 2013a mTOR regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 62 2935–2947. (https://doi.org/10.2337/db12-1504)

    • Search Google Scholar
    • Export Citation
  • EidAALeeD-YRomanLJKhazimKGorinY 2013b Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent eNOS uncoupling and matrix protein expression. Molecular and Cellular Biology 3439–3460. (https://doi.org/10.1128/MCB.00217-13)

    • Search Google Scholar
    • Export Citation
  • EidSBoutarySBraychKSabraRMassaadCHamdyARashidAMoodadSBlockKGorinY, 2016 mTORC2 signaling regulates Nox4-induced podocyte depletion in diabetes. Antioxidants and Redox Signaling 703–719. (https://doi.org/10.1089/ars.2015.6562)

    • Search Google Scholar
    • Export Citation
  • EllekildeMKrychLHansenCHFHufeldtMRDahlKHansenLHSørensenSJVogensenFKNielsenDSHansenAK 2014 Characterization of the gut microbiota in leptin deficient obese mice–correlation to inflammatory and diabetic parameters. Research in Veterinary Science 241–250. (https://doi.org/10.1016/j.rvsc.2014.01.007)

    • Search Google Scholar
    • Export Citation
  • EsteveERicartWFernandez-RealJM 2011 Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes: did gut microbiote co-evolve with insulin resistance? Current Opinion in Clinical Nutrition and Metabolic Care 483–490. (https://doi.org/10.1097/MCO.0b013e328348c06d)

    • Search Google Scholar
    • Export Citation
  • EverardACaniPD 2013 Diabetes, obesity and gut microbiota. Best Practice and Research: Clinical Gastroenterology 73–83. (https://doi.org/10.1016/j.bpg.2013.03.007)

    • Search Google Scholar
    • Export Citation
  • EverardABelzerCGeurtsLOuwerkerkJPDruartCBindelsLBGuiotYDerrienMMuccioliGGDelzenneNM, 2013 Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 9066–9071. (https://doi.org/10.1073/pnas.1219451110)

    • Search Google Scholar
    • Export Citation
  • FernándezAMKimJKYakarSDupontJHernandez-SanchezCCastleALFilmoreJShulmanGILe RoithD 2001 Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes and Development 1926–1934. (https://doi.org/10.1101/gad.908001)

    • Search Google Scholar
    • Export Citation
  • FitzgeraldJPNayakBShanmugasundaramKFriedrichsWSudarshanSEidAADeNapoliTParekhDJGorinYBlockK 2012 Nox4 mediates renal cell carcinoma cell invasion through hypoxia-induced interleukin 6-and 8-production. PLoS ONE e30712. (https://doi.org/10.1371/journal.pone.0030712)

    • Search Google Scholar
    • Export Citation
  • FurusawaYObataYFukudaSEndoTANakatoGTakahashiDNakanishiYUetakeCKatoKKatoT, 2013 Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 446–450. (https://doi.org/10.1038/nature12721)

    • Search Google Scholar
    • Export Citation
  • GalvanDLDaneshFR 2016 Paradoxical role of IL-17 in progression of diabetic nephropathy. Journal of the American Society of Nephrology 657–658. (https://doi.org/10.1681/ASN.2015070813)

    • Search Google Scholar
    • Export Citation
  • GaovZYinJZhangJWardREMartinRJLefevrevMCefaluWTYeJ 2009 Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 1509–1517. (https://doi.org/10.2337/db08-1637)

    • Search Google Scholar
    • Export Citation
  • GoicoaSÁlvarezSRicordiCInverardiLDomínguez-BendalaJ 2006 Sodium butyrate activates genes of early pancreatic development in embryonic stem cells. Cloning and Stem Cells 140–149. (https://doi.org/10.1089/clo.2006.8.140)

    • Search Google Scholar
    • Export Citation
  • GrassetEPuelACharpentierJColletXChristensenJETercéFBurcelinR 2017 A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metabolism 1075.e5–1090.e5. (https://doi.org/10.1016/j.cmet.2017.04.013)

    • Search Google Scholar
    • Export Citation
  • GraySPDi MarcoEOkabeJSzyndralewiezCHeitzFMontezanoACde HaanJBKoulisCEl-OstaAAndrewsKL 2013 Nox1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 1888–1902. (https://doi.org/10.1161/CIRCULATIONAHA.112.132159)

    • Search Google Scholar
    • Export Citation
  • GryderBEWuLWoldemichaelGMPomellaSQuinnTRParkPMCClevelandAStantonBZSongYRotaR, 2019 Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nature Communications 3004. (https://doi.org/10.1038/s41467-019-11046-7)

    • Search Google Scholar
    • Export Citation
  • HakamiNYDustingGJPeshavariyaHM 2016 Trichostatin A, a histone deacetylase inhibitor suppresses NADPH oxidase 4‐derived redox signalling and angiogenesis. Journal of Cellular and Molecular Medicine 1932–1944. (https://doi.org/10.1111/jcmm.12885)

    • Search Google Scholar
    • Export Citation
  • HaroCMontes-BorregoMRangel-ZúñigaOAAlcalá-DíazJFGómez-DelgadoFPérez-MartínezPDelgado-ListaJQuintana-NavarroGMTinahonesFJLandaBB, 2016 Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. Journal of Clinical Endocrinology and Metabolism 233–242. (https://doi.org/10.1210/jc.2015-3351)

    • Search Google Scholar
    • Export Citation
  • HasegawaGNakanoKSawadaMUnoKShibayamaYIenagaKKondoM 1991 Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney International 1007–1012. (https://doi.org/10.1038/ki.1991.308)

    • Search Google Scholar
    • Export Citation
  • HongSZhouWFangBLuWLoroEDamleMDingGJagerJZhangSZhangY, 2017 Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nature Medicine 223–234. (https://doi.org/10.1038/nm.4245)

    • Search Google Scholar
    • Export Citation
  • KageyamaABennoY 2001 Rapid detection of human fecal Eubacterium species and related genera by nested PCR method. Microbiology and Immunology 315–318. (https://doi.org/10.1111/j.1348-0421.2001.tb02624.x)

    • Search Google Scholar
    • Export Citation
  • KajiIKarakiSKuwaharaA 2014 Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion 31–36. (https://doi.org/10.1159/000356211)

    • Search Google Scholar
    • Export Citation
  • KameyamaKItohK 2014 Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes and Environments 427–430. (https://doi.org/10.1264/jsme2.ME14054)

    • Search Google Scholar
    • Export Citation
  • KarlssonCLJÖnnerfältJXuJMolinGAhrnéSThorngren‐JerneckK 2012 The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 2257–2261. (https://doi.org/10.1038/oby.2012.110)

    • Search Google Scholar
    • Export Citation
  • KennedyNAWalkerAWBerrySHDuncanSHFarquarsonFMLouisPThomsonJM 2014 The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PloS One e88982. (https://doi.org/10.1371/journal.pone.0088982)

    • Search Google Scholar
    • Export Citation
  • KhanSJenaG 2014 Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food and Chemical Toxicology 127–139. (https://doi.org/10.1016/j.fct.2014.08.010)

    • Search Google Scholar
    • Export Citation
  • KhanSJenaG 2015 The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention. Epigenomics 669–680. (https://doi.org/10.2217/epi.15.20)

    • Search Google Scholar
    • Export Citation
  • KimCHPennisiPZhaoHYakarSKaufmanJBIganakiKShiloachJSchererPEQuonMJLeRoithD 2006 MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. American Journal of Physiology: Endocrinology and Metabolism E298–E305. (https://doi.org/10.1152/ajpendo.00319.2005)

    • Search Google Scholar
    • Export Citation
  • KoSJBuYBaeJBangYMKimJLeeHBeom-JoonLHyunYHParkJW 2014 Protective effect of Laminaria japonica with probiotics on murine colitis. Mediators of Inflammation 417814. (https://doi.org/10.1155/2014/417814)

    • Search Google Scholar
    • Export Citation
  • KongGHuangZJiWWangXLiuJWuXHuangZLiRZhuQ 2017 The ketone metabolite β-hydroxybutyrate attenuates oxidative stress in spinal cord injury by suppression of class I histone deacetylases. Journal of Neurotrauma 2645–2655. (https://doi.org/10.1089/neu.2017.5192)

    • Search Google Scholar
    • Export Citation
  • KurakawaTOgataKMatsudaKTsujiHKubotaHTakadaTKadoYAsaharaTTakahashiTNomotoK 2015 Diversity of intestinal Clostridium coccoides group in the Japanese population, as demonstrated by reverse transcription-quantitative PCR. PLoS One e0126226. (https://doi.org/10.1371/journal.pone.0126226)

    • Search Google Scholar
    • Export Citation
  • LarsenCMFaulenbachMVaagAVølundAEhsesJASeifertBMandrup-PoulsenTDonathMY 2007a Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine 1517–1526. (https://doi.org/10.1056/NEJMoa065213)

    • Search Google Scholar
    • Export Citation
  • LarsenLTonnesenMRonnSGStørlingJJørgensenSMascagniPDinarelloCABillestrupNMandrup-PoulsenT 2007b Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 779–789. (https://doi.org/10.1007/s00125-006-0562-3)

    • Search Google Scholar
    • Export Citation
  • LauKBenitezPArdissoneAWilsonTDCollinsELLorcaGLiNSankarDWasserfallCNeuJ, 2011 Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. Journal of Immunology 3538–3546. (https://doi.org/10.4049/jimmunol.1001864)

    • Search Google Scholar
    • Export Citation
  • LiNHatchMWasserfallCHDouglas-EscobarMAtkinsonMASchatzDANeuJ 2010 Butyrate and type 1 diabetes mellitus: can we fix the intestinal leak? Journal of Pediatric Gastroenterology and Nutrition 414–417. (https://doi.org/10.1097/MPG.0b013e3181dd913a)

    • Search Google Scholar
    • Export Citation
  • LiJVAshrafianHBueterMKinrossJSandsCle RouxCWBloomSRDarziAAthanasiouTMarchesiJR, 2011a Metabolic surgery profoundly influences gut microbial–host metabolic cross-talk. Gut 1214–1223. (https://doi.org/10.1136/gut.2010.234708)

    • Search Google Scholar
    • Export Citation
  • LiDWangXRenWRenJLanXWangFLiHZhangFHanYSongT, 2011b High expression of liver histone deacetylase 3 contributes to high-fat-diet-induced metabolic syndrome by suppressing the PPAR-γ and LXR-α-pathways in E3 rats. Molecular and Cellular Endocrinology 69–80. (https://doi.org/10.1016/j.mce.2011.06.028)

    • Search Google Scholar
    • Export Citation
  • LippertKKedenkoLAntonielliLKedenkoIGemeierCLeitnerMKautzky-WillerAPaulweberBHacklE 2017 Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Beneficial Microbes 545–556. (https://doi.org/10.3920/BM2016.0184)

    • Search Google Scholar
    • Export Citation
  • Lopez-Siles M, Martinez-Medina M, Abellà C, Busquets D, Sabat-Mir M, Duncan SH, Aldeguer X, Flint HJ & Garcia-Gil LJ 2015 Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Applied and Environmental Microbiology 81 7582–7592. (https://doi.org/10.1128/AEM.02006-15)

  • LukovacSBelzerCPellisLKeijserBJde VosWMMontijnRCRoeselersG 2014 Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio e01438–e01414. (https://doi.org/10.1128/mBio.01438-14)

    • Search Google Scholar
    • Export Citation
  • MaaloufRMEidAAGorinYCBlockKEscobarGPBaileySAbboudHE 2011 Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. American Journal of Physiology: Cell Physiology C597–C604. (https://doi.org/10.1152/ajpcell.00331.2011)

    • Search Google Scholar
    • Export Citation
  • MancoMPutignaniLBottazzoGF 2010 Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocrine Reviews 817–844. (https://doi.org/10.1210/er.2009-0030)

    • Search Google Scholar
    • Export Citation
  • Mandrup-PoulsenTPickersgillLDonathMY 2010 Blockade of interleukin 1 in type 1 diabetes mellitus. Nature Reviews: Endocrinology 158–166. (https://doi.org/10.1038/nrendo.2009.271)

    • Search Google Scholar
    • Export Citation
  • ManeaSAAntonescuMLFenyoIMRaicuMSimionescuMManeaA 2018 Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biology 332–343. (https://doi.org/10.1016/j.redox.2018.03.011)

    • Search Google Scholar
    • Export Citation
  • MasuiRSasakiMFunakiYOgasawaraNMizunoMIidaAIzawaSKondoYItoYTamuraY, 2013 G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflammatory Bowel Diseases 2848–2856. (https://doi.org/10.1097/01.MIB.0000435444.14860.ea)

    • Search Google Scholar
    • Export Citation
  • McGee-LawrenceMEWhiteTALeBrasseurNKWestendorfJJ 2015 Conditional deletion of Hdac3 in osteoprogenitor cells attenuates diet-induced systemic metabolic dysfunction. Molecular and Cellular Endocrinology 42–51. (https://doi.org/10.1016/j.mce.2015.02.001)

    • Search Google Scholar
    • Export Citation
  • MeierBCWagnerBK 2014 Inhibition of HDAC3 as a strategy for developing novel diabetes therapeutics. Epigenomics 209–214. (https://doi.org/10.2217/epi.14.11)

    • Search Google Scholar
    • Export Citation
  • Mejía-LeónMEBarcaAM 2015 Diet, microbiota and immune system in type 1 diabetes development and evolution. Nutrients 9171–9184. (https://doi.org/10.3390/nu7115461)

    • Search Google Scholar
    • Export Citation
  • MotulskyH 1999 Analyzing Data with GraphPad Prism. GraphPad Software Incorporated.

  • MussoGGambinoRCassaderM 2010 Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 2277–2284. (https://doi.org/10.2337/dc10-0556)

    • Search Google Scholar
    • Export Citation
  • Navab-MoghadamFSedighiMKhamsehMEAlaei-ShahmiriFTalebiMRazaviSAmirmozafariN 2017 The association of type II diabetes with gut microbiota composition. Microbial Pathogenesis 630–636. (https://doi.org/10.1016/j.micpath.2017.07.034)

    • Search Google Scholar
    • Export Citation
  • NishitsujiKXiaoJNagatomoRUmemotoHMorimotoYAkatsuHInoueKTsuneyamaK 2017 Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome. Scientific Reports 15876. (https://doi.org/10.1038/s41598-017-16189-5)

    • Search Google Scholar
    • Export Citation
  • PariseRAShawaqfehMEgorinMJBeumerJH 2008 Liquid chromatography–mass spectrometric assay for the quantitation in human plasma of ABT-888, an orally available, small molecule inhibitor of poly (ADP-ribose) polymerase. Journal of Chromatography: B, Analytical Technologies in the Biomedical and Life Sciences 141–147. (https://doi.org/10.1016/j.jchromb.2008.07.032)

    • Search Google Scholar
    • Export Citation
  • ParkJKimMKangSGJannaschAHCooperBPattersonJKimCH 2015 Short chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology 80–93. (https://doi.org/10.1038/mi.2014.44)

    • Search Google Scholar
    • Export Citation
  • PetersonGL 1977 A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry 346–356. (https://doi.org/10.1016/0003-2697(77)90043-4)

    • Search Google Scholar
    • Export Citation
  • PlovierHEverardADruartCDepommierCVan HulMGeurtsLChillouxJOttmanNDuparcTLichtensteinL, 2017 A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine 107–113. (https://doi.org/10.1038/nm.4236)

    • Search Google Scholar
    • Export Citation
  • PrakosoDDeBlasioMJQinCRosliSKiriazisHQianHDuXJWeeksKLGregorevicPMcMullenJR, 2017 Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clinical Science 1345–1360. (https://doi.org/10.1042/CS20170063)

    • Search Google Scholar
    • Export Citation
  • RafehiHBalcerczykALunkeSKaspiAZiemannMKnHOkabeJKhuranaIOoiJKhanAW, 2014 Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Research 1271–1284. (https://doi.org/10.1101/gr.168781.113)

    • Search Google Scholar
    • Export Citation
  • Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G & Louis P 2008 Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. British Journal of Nutrition 101 541–550. (https://doi.org/10.1017/S0007114508019880)

  • RemelyMAumuellerEMeroldCDworzakSHippeBZannerJPointnerABrathHHaslbergerAG 2014 Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 85–92. (https://doi.org/10.1016/j.gene.2013.11.081)

    • Search Google Scholar
    • Export Citation
  • RemsbergJREdigerBNHoWYDamleMLiZTengCLanzillottaCStoffersDALazarMA 2017 Deletion of histone deacetylase 3 in adult beta cells improves glucose tolerance via increased insulin secretion. Molecular Metabolism 30–37. (https://doi.org/10.1016/j.molmet.2016.11.007)

    • Search Google Scholar
    • Export Citation
  • RoagerHMLichtTRPoulsenSKLarsenTMBahlMI 2014 Microbial enterotypes, inferred by the Prevotella-to-Bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new Nordic diet. Applied and Environmental Microbiology 1142–1149. (https://doi.org/10.1128/AEM.03549-13)

    • Search Google Scholar
    • Export Citation
  • RobertSGysemansCTakiishiTKorfHSpagnuoloISebastianiGVan HuynegemKSteidlerLCaluwaertsSDemetterP, 2014 Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 2876–2887. (https://doi.org/10.2337/db13-1236)

    • Search Google Scholar
    • Export Citation
  • RoopchandDECarmodyRNKuhnPMoskalKRojas-SilvaPTurnbaughPJRaskinI 2015 Dietary polyphenols promote growth of the gut bacterium akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 2847–2858. (https://doi.org/10.2337/db14-1916)

    • Search Google Scholar
    • Export Citation
  • RoshanravanNMahdaviRAlizadehEJafarabadiMAHedayatiMGhavamiAAlipourSAlamdariNMBaratiMOstadrahimiA 2017 Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Hormone and Metabolic Research 886–891. (https://doi.org/10.1055/s-0043-119089)

    • Search Google Scholar
    • Export Citation
  • SaidHSSudaWNakagomeSChinenHOshimaKKimSKimuraRIrahaAIshidaHFujitaJ, 2013 Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Research 15–25. (https://doi.org/10.1093/dnares/dst037)

    • Search Google Scholar
    • Export Citation
  • Sánchez E, Laparra JM & Sanz Y 2012 Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Applied and Environmental Microbiology 78 6507–6515. (https://doi.org/10.1128/AEM.00563-12)

  • SathishkumarCPrabuPBalakumarMLeninRPrabhuDAnjanaRMMohanVBalasubramanyamM 2016 Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clinical Epigenetics 125. (https://doi.org/10.1186/s13148-016-0293-3)

    • Search Google Scholar
    • Export Citation
  • ScharlauDBorowickiAHabermannNHofmannTKlenowSMieneCMunjalUSteinKGleiM 2009 Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutation Research 39–53. (https://doi.org/10.1016/j.mrrev.2009.04.001)

    • Search Google Scholar
    • Export Citation
  • SchneebergerMEverardAGómez-ValadésAGMatamorosSRamírezSDelzenneNMGomisRClaretMCaniPD 2015 Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports 16643. (https://doi.org/10.1038/srep16643)

    • Search Google Scholar
    • Export Citation
  • ShinNRLeeJCLeeHYKimMSWhonTWLeeMSBaeJW 2014 An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 727–735. (https://doi.org/10.1136/gutjnl-2012-303839)

    • Search Google Scholar
    • Export Citation
  • SiudaDZechnerUEl HajjNPrawittDLangerDXiaNHorkeSPautzAKleinertHFörstermannU, 2012 Transcriptional regulation of Nox4 by histone deacetylases in human endothelial cells. Basic Research in Cardiology 283. (https://doi.org/10.1007/s00395-012-0283-3)

    • Search Google Scholar
    • Export Citation
  • Thallas-BonkeVJandeleit-DahmKACooperME 2015 Nox-4 and progressive kidney disease. Current Opinion in Nephrology and Hypertension 74–80. (https://doi.org/10.1097/MNH.0000000000000082)

    • Search Google Scholar
    • Export Citation
  • Tong J, Liu C, Summanen P, Xu H & Finegold SM 2011 Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17 64–68. (https://doi.org/10.1016/j.anaerobe.2011.03.004)

  • UddenSMNWaliullahSHarrisMZakiH 2017 The ex vivo colon organ culture and its use in antimicrobial host defense studies. Journal of Visualized Experiments 120 e55347. (https://doi.org/10.3791/55347)

    • Search Google Scholar
    • Export Citation
  • VieiraELMLeonelAJSadAPBeltrãoNRMCostaTFFerreiraTMRGomes-SantosACFariaAMCPeluzioMCGCaraDC, 2012 Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. Journal of Nutritional Biochemistry 430–436. (https://doi.org/10.1016/j.jnutbio.2011.01.007)

    • Search Google Scholar
    • Export Citation
  • Vijay-KumarMAitkenJDCarvalhoFACullenderTCMwangiSSrinivasanSSitaramanSVKnightRLeyREGewirtzAT 2010 Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 228–231. (https://doi.org/10.1126/science.1179721)

    • Search Google Scholar
    • Export Citation
  • VitalMKarchAPieperDH 2017 Colonic butyrate-producing communities in humans: an overview using omics data. mSystems e00130-17. (https://doi.org/10.1128/mSystems.00130-17)

    • Search Google Scholar
    • Export Citation
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P & Bergerat A 2011 Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal 5 220. (https://doi.org/10.1038/ismej.2010.118)

  • XiaJHuHXueWWangXSWuS 2018 The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay. Journal of Enzyme Inhibition and Medicinal Chemistry 525–535. (https://doi.org/10.1080/14756366.2018.1437156)

    • Search Google Scholar
    • Export Citation
  • XuZTongQZhangZWangSZhengYLiuQQianLBChenSYSunJCaiL 2017 Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clinical Science 1841–1857. (https://doi.org/10.1042/CS20170064)

    • Search Google Scholar
    • Export Citation
  • Yadav H, Lee J-H, Lloyd J, Walter P & Rane SG 2013 Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry 288 25088–25097. (https://doi.org/10.1074/jbc.M113.452516)

  • YeJGaoZ 2013 Metabolic Benefits to Butyrate as a Chronic Diet Supplement. U.S. Patent Application No. 13/721,785.

  • ZhangJXuZGuJJiangSLiuQZhengYFreedmanJHSunJCaiL 2018 HDAC3 inhibition in diabetic mice may activate Nrf2 preventing diabetes-induced liver damage and FGF21 synthesis and secretion leading to aortic protection. American Journal of Physiology: Endocrinology and Metabolism E150–E162. (https://doi.org/10.1152/ajpendo.00465.2017)

    • Search Google Scholar
    • Export Citation
  • ZhaoWCZhangBLiaoMJZhangWXHeWYWangHBYangCX 2014 Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neuroscience Letters 81–85. (https://doi.org/10.1016/j.neulet.2013.12.019)

    • Search Google Scholar
    • Export Citation