Glucagon modulates proliferation and differentiation of human adipose precursors

in Journal of Molecular Endocrinology
View More View Less
  • 1 Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
  • 2 Azienda Ospedaliera Universitaria Careggi (AOUC), Careggi Hospital, Florence, Italy

Correspondence should be addressed to G Cantini or M Luconi: giulia.cantini@unifi.it or michaela.luconi@unifi.it
Restricted access

Glucagon-like peptide 1 receptor agonists (GLP-1RAs), which are currently used for the treatment of type 2 diabetes, have recently been proposed as anti-obesity drugs, due to their relevant effects on weight loss. Furthermore, dual agonists for both GLP-1R and glucagon receptor (GCGR) are under investigation for their promising action on adiposity, although underlying mechanisms still need to be clarified. We have recently demonstrated that GLP-1 and liraglutide interfere with the proliferation and differentiation of human adipose precursors, supporting the hypothesis of a peripheral action of GLP-1RA on weight. Here, we investigated glucagon activity in an in vitro model of primary human adipose-derived stem cells (ASCs). Glucagon significantly inhibited ASC proliferation in a dose- and time-dependent manner, as evaluated by cell count and thymidine incorporation. When added during in vitro-induced adipogenesis, glucagon significantly reduced adipocyte differentiation, as demonstrated by the evaluation of intracellular fat content and quantitative expression of early and mature adipocyte markers (PPARγ and FABP4, HSL). Notably, the inhibitory effect of glucagon on cell proliferation and adipogenesis was reversed by specific GLP-1R (exendin-9) and GCGR (des-His1-Glu9-glucagon(1–29)) antagonists. The presence of both receptors was demonstrated by Western blot, immunofluorescence and cytofluorimetric analysis of ASCs. In conclusion, we demonstrated a direct inhibitory action of glucagon on the proliferation and differentiation of human adipose precursors, which seems to involve both GLP-1R and GCGR. These findings suggest that the adipose stem compartment is a novel target of glucagon, possibly contributing to the weight loss obtained in vivo with dual GLP-1R/glucagon agonists.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1203 1024 74
Full Text Views 58 39 2
PDF Downloads 30 23 0
  • Ahrén B 2015 Glucagon--Early breakthroughs and recent discoveries. Peptides 7481. (https://doi.org/10.1016/j.peptides.2015.03.011)

  • Arafat AM, Kaczmarek P, Skrzypski M, Pruszyńska-Oszmalek E, Kołodziejski P, Szczepankiewicz D, Sassek M, Wojciechowicz T, Wiedenmann B & Pfeiffer AF, 2013 Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis? Diabetologia 588597. (https://doi.org/10.1007/s00125-012-2803-y)

    • Search Google Scholar
    • Export Citation
  • Astrup A & Finer N 2000 Redefining type 2 diabetes: 'diabesity' or 'obesity dependent diabetes mellitus'? Obesity Reviews 5759. (https://doi.org/10.1046/j.1467-789x.2000.00013.x)

    • Search Google Scholar
    • Export Citation
  • Bagger JI, Holst JJ, Hartmann B, Andersen B, Knop FK & Vilsbøll T 2015 Effect of oxyntomodulin, glucagon, GLP-1, and combined glucagon +GLP-1 infusion on food intake, appetite, and resting energy expenditure. Journal of Clinical Endocrinology & Metabolism 45414552. (https://doi.org/10.1210/jc.2015-2335)

    • Search Google Scholar
    • Export Citation
  • Baglioni S, Cantini G, Poli G, Francalanci M, Squecco R, Di Franco A, Borgogni E, Frontera S, Nesi G & Liotta F, 2012 Functional differences in visceral and subcutaneous fat pads originate from differences in the adipose stem cell. PLOS ONE e36569 . (https://doi.org/10.1371/journal.pone.0036569)

    • Search Google Scholar
    • Export Citation
  • Baglioni S, Francalanci M, Squecco R, Lombardi A, Cantini G, Angeli R, Gelmini S, Guasti D, Benvenuti S & Annunziato F, 2009 Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB Journal 34943505. (https://doi.org/10.1096/fj.08-126946)

    • Search Google Scholar
    • Export Citation
  • Bertin E, Arner P, Bolinder J & Hagström-Toft E 2001 Action of glucagon and glucagon-like peptide-1-(7–36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo. Journal of Clinical Endocrinology & Metabolism 12291234. (https://doi.org/10.1210/jcem.86.3.7330)

    • Search Google Scholar
    • Export Citation
  • Cantini G, Di Franco A, Mannucci E & Luconi M 2017 Is cleaved glucagon-like peptide 1 really inactive? Effects of GLP-1(9–36) on human adipose stem cells. Molecular & Cellular Endocrinology 1015. (https://doi.org/10.1016/j.mce.2016.10.013)

    • Search Google Scholar
    • Export Citation
  • Cantini G, Di Franco A, Samavat J, Forti G, Mannucci E & Luconi M 2015 Effect of liraglutide on proliferation and differentiation of human adipose stem cells. Molecular & Cellular Endocrinology 4350. (https://doi.org/10.1016/j.mce.2014.12.021)

    • Search Google Scholar
    • Export Citation
  • Cantini G, Mannucci E & Luconi M 2016 Perspectives in GLP-1 research: new targets, new receptors. Trends in Endocrinology & Metabolism 427438. (https://doi.org/10.1016/j.tem.2016.03.017)

    • Search Google Scholar
    • Export Citation
  • Chepurny OG, Matsoukas MT, Liapakis G, Leech CA, Milliken BT, Doyle RP & Holz GG 2019 Non-conventional glucagon and GLP-1 receptor agonist and antagonist interplay at the GLP-1 receptor revealed in high-throughput FRET assays for cAMP. Journal of Biological Chemistry 35143531. (https://doi.org/10.1074/jbc.RA118.005682)

    • Search Google Scholar
    • Export Citation
  • Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ & Chaudhary N, 2009 A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nature Chemical Biology 749757. (https://doi.org/10.1038/nchembio.209)

    • Search Google Scholar
    • Export Citation
  • El Bekay R, Coín-Aragüez L, Fernández-García D, Oliva-Olivera W, Bernal-López R, Clemente-Postigo M, Delgado-Lista J, Diaz-Ruiz A, Guzman-Ruiz R & Vázquez-Martínez R, 2016 Effects of glucagon-like peptide-1 on the differentiation and metabolism of human adipocytes. British Journal of Pharmacology 18201834. (https://doi.org/10.1111/bph.13481)

    • Search Google Scholar
    • Export Citation
  • Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi RD & Tschöp MH 2010 The metabolic actions of glucagon revisited. Nature Reviews. Endocrinology 689697. (https://doi.org/10.1038/nrendo.2010.187)

    • Search Google Scholar
    • Export Citation
  • Hwang JI, Yun S, Moon MJ, Park CR & Seong JY 2014 Molecular evolution of GPCRs: GLP1/GLP1 receptors. Journal of Molecular Endocrinology T15T27. (https://doi.org/10.1530/JME-13-0137)

    • Search Google Scholar
    • Export Citation
  • Irwin DM & Wong K 2005 Evolution of new hormone function: loss and gain of a receptor. Journal of Heredity 205211. (https://doi.org/10.1093/jhered/esi024)

    • Search Google Scholar
    • Export Citation
  • Lee HM, Joo BS, Lee CH, Kim HY, Ock JH & Lee YS 2015 Effect of glucagon-like peptide-1 on the differentiation of adipose-derived stem cells into osteoblasts and adipocytes. Journal of Menopausal Medicine 93103. (https://doi.org/10.6118/jmm.2015.21.2.93)

    • Search Google Scholar
    • Export Citation
  • Monami M, Dicembrini I, Marchionni N, Rotella CM & Mannucci E 2012 Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis. Experimental Diabetes Research 672658 . (https://doi.org/10.1155/2012/672658)

    • Search Google Scholar
    • Export Citation
  • Müller TD, Finan B, Clemmensen C, DiMarchi RD & Tschöp MH 2017 The new biology and pharmacology of glucagon. Physiological Reviews 721766. (https://doi.org/10.1152/physrev.00025.2016)

    • Search Google Scholar
    • Export Citation
  • Muscogiuri G, Cignarelli A, Giorgino F, Prodam F, Santi D, Tirabassi G, Balercia G, Modica R, Faggiano A & Colao A 2014 GLP-1: benefits beyond pancreas. Journal of Endocrinological Investigation 11431153. (https://doi.org/10.1007/s40618-014-0137-y)

    • Search Google Scholar
    • Export Citation
  • Oren DA, Wei Y, Skrabanek L, Chow BK, Mommsen T & Mojsov S 2016 Structural mapping and functional characterization of zebrafish class B G-protein coupled receptor (GPCR) with dual ligand selectivity towards GLP-1 and glucagon. PLOS ONE e0167718 . (https://doi.org/10.1371/journal.pone.0167718)

    • Search Google Scholar
    • Export Citation
  • Pappachan JM & Viswanath AK 2017 Medical management of diabesity: do we have realistic targets? Current Diabetes Reports 4 . (https://doi.org/10.1007/s11892-017-0828-9)

    • Search Google Scholar
    • Export Citation
  • Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DC, le Roux CW, Violante Ortiz R & Jensen CB, 2015 A randomized, controlled trial of 3.0 mg of liraglutide in weight management. New England Journal of Medicine 1122. (https://doi.org/10.1056/NEJMoa1411892)

    • Search Google Scholar
    • Export Citation
  • Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME & Jiang G, 2009 Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 22582266. (https://doi.org/10.2337/db09-0278)

    • Search Google Scholar
    • Export Citation
  • Post SR, Rubinstein PG & Tager HS 1993 Mechanism of action of des-His1-[Glu9]glucagon amide, a peptide antagonist of the glucagon receptor system. Proceedings of the National Academy of Sciences of the United States of America 16621666. (https://doi.org/10.1073/pnas.90.5.1662)

    • Search Google Scholar
    • Export Citation
  • Sánchez-Garrido MA, Brandt SJ, Clemmensen C, Müller TD, DiMarchi RD & Tschöp MH 2017 GLP-1/glucagon receptor co-agonism for treatment of obesity. Diabetologia 18511861. (https://doi.org/10.1007/s00125-017-4354-8)

    • Search Google Scholar
    • Export Citation
  • Sanz C, Vázquez P, Blázquez C, Barrio PA, Alvarez Mdel M & Blázquez E 2010 Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. American Journal of Physiology. Endocrinology & Metabolism E634E643. (https://doi.org/10.1152/ajpendo.00460.2009)

    • Search Google Scholar
    • Export Citation
  • Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM, Drucker DJ & Holst JJ 2018 Insulin secretion depends on intra-islet glucagon signaling. Cell Reports 11271134.e2. (https://doi.org/10.1016/j.celrep.2018.10.018)

    • Search Google Scholar
    • Export Citation
  • Tan TM, Field BC, McCullough KA, Troke RC, Chambers ES, Salem V, Gonzalez Maffe J, Baynes KC, De Silva A & Viardot A, 2013 Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 11311138. (https://doi.org/10.2337/db12-0797)

    • Search Google Scholar
    • Export Citation
  • Thorens B, Porret A, Bühler L, Deng SP, Morel P & Widmann C 1993 Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes 16781682. (https://doi.org/10.2337/diab.42.11.1678)

    • Search Google Scholar
    • Export Citation
  • Tillner J, Posch MG, Wagner F, Teichert L, Hijazi Y, Einig C, Keil S, Haack T, Wagner M & Bossart M, 2019 A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes, Obesity & Metabolism 120128. (https://doi.org/10.1111/dom.13494)

    • Search Google Scholar
    • Export Citation
  • Unson CG, Andreu D, Gurzenda EM & Merrifield RB 1987 Synthetic peptide antagonists of glucagon. PNAS 40834087. (https://doi.org/10.1073/pnas.84.12.4083)

    • Search Google Scholar
    • Export Citation
  • Unson CG, Macdonald D, Ray K, Durrah TL & Merrifield RB 1991 Position 9 replacement analogs of glucagon uncouple biological activity and receptor binding. Journal of Biological Chemistry 27632766.

    • Search Google Scholar
    • Export Citation
  • Vendrell J, El Bekay R, Peral B, García-Fuentes E, Megia A, Macias-Gonzalez M, Fernández Real J, Jimenez-Gomez Y, Escoté X & Pachón G, 2011 Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology 40724079. (https://doi.org/10.1210/en.2011-1070)

    • Search Google Scholar
    • Export Citation
  • Wewer ANJ, Kuhre RE, Pedersen J, Knop FK & Holst JJ 2016 The biology of glucagon and the consequences of hyperglucagonemia. Biomarkers in Medicine 11411151. (https://doi.org/10.2217/bmm-2016-0090)

    • Search Google Scholar
    • Export Citation
  • Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG, Wren AM, Frost GS, Meeran K & Ghatei MAc 2005 Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 23902395. (https://doi.org/10.2337/diabetes.54.8.2390)

    • Search Google Scholar
    • Export Citation