Heme oxygenase-1 arrests Leydig cells functions and impairs their regulation by histamine

in Journal of Molecular Endocrinology

Correspondence should be addressed to O P Pignataro: oppignataro@gmail.com
Restricted access

Testicular Leydig cells (LC) are modulated by several pathways, one of them being the histaminergic system. Heme oxygenase-1 (HO-1), whose upregulation comprises the primary response to oxidative noxae, has a central homeostatic role and might dysregulate LC functions when induced. In this report, we aimed to determine how hemin, an HO-1 inducer, affects LC proliferative capacity and whether HO-1 effects on LC functions are reversible. It was also evaluated if HO-1 interacts in any way with histamine, affecting its regulatory action over LC. MA-10 and R2C cell lines and immature rat LC were used as models. Firstly, we show that after a 24-h incubation with 25 µmol/L hemin, LC proliferation is reversibly impaired by cell cycle arrest in G2/M phase, with no evidence of apoptosis induction. Even though steroid production is abrogated after a 48-h exposure to 25 µmol/L hemin, steroidogenesis can be restored to control levels in a time-dependent manner if the inducer is removed from the medium. Regarding HO-1 and histamine interaction, it is shown that hemin abrogates histamine biphasic effect on steroidogenesis and proliferation. Working with histamine receptors agonists, we elucidated that HO-1 induction affects the regulation mediated by receptor types 1, 2 and 4. In summary, HO-1 induction arrests LC functions, inhibiting steroid production and cell cycle progression. Despite their reversibility, HO-1 actions might negatively influence critical phases of LC development and differentiation affecting their function as well as other androgen-dependent organs. What’s more, we have described a hitherto unknown interaction between HO-1 induction and histamine effects.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 354 354 40
Full Text Views 33 33 0
PDF Downloads 14 14 1
  • AbiusoAMBBerenszteinEPagottoRMPereyraENMedinaVMartinel LamasDJBesio MorenoMPignataroOPMondilloC 2014 H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells. Journal of Endocrinology 241253. (https://doi.org/10.1530/JOE-14-0401)

    • Search Google Scholar
    • Export Citation
  • AbiusoAMBVarelaMLHaro DurandLBesio MorenoMMarcosAPonzioRMBelgoroskyAPignataroOBerenszteinEet al. 2018 Histamine H4 receptor as a novel therapeutic target for the treatment of Leydig cell tumors in prepubertal boys. European Journal of Cancer 125135. (https://doi.org/10.1016/j.ejca.2017.12.003)

    • Search Google Scholar
    • Export Citation
  • AlbrechtMFrungieriMBGonzalez-CalvarSMeinekeVKöhnFMMayerhoferA 2005 Evidence for a histaminergic system in the human testis. Fertility and Sterility 10601063. (https://doi.org/10.1016/j.fertnstert.2004.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • AscoliM 1981 Characterization of several clonal lines of cultured leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 8895. (https://doi.org/10.1210/endo-108-1-88)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • AscoliM 1985 Functions and regulation of cell surface receptors in cultured Leydig tumor cells. In The Receptors Vol. II pp 367400. Academic Press. (https://doi.org/10.1016/B978-0-12-185202-3.50017-2)

    • Search Google Scholar
    • Export Citation
  • Bukowska-StrakovaKCieslaMSzadeKNowakWNStrakaRSzadeATyszka-CzocharaMNajderKKonturekASiedlarMet al. 2017 Heme oxygenase 1 affects granulopoiesis in mice through control of myelocyte proliferation. Immunobiology 846857. (https://doi.org/10.1016/j.imbio.2017.05.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • ChangTWuLWangR 2008 Inhibition of vascular smooth muscle cell proliferation by chronic hemin treatment. American Journal of Physiology: Heart and Circulatory Physiology 9991007. (https://doi.org/10.1152/ajpheart.01289.2007)

    • Search Google Scholar
    • Export Citation
  • ChenHStanleyEJinSZirkinBR 2014 Stem Leydig cells: from fetal to aged animals. Birth Defects Research: C Embryo Today 272283. (https://doi.org/10.1002/bdrc.20192.Stem)

    • Search Google Scholar
    • Export Citation
  • Del PuntaKCharreauEHPignataroOP 1996 Nitric oxide inhibits Leydig cell steroidogenesis. Endocrinology 53375343. (https://doi.org/10.1210/endo.137.12.8940355)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • DesmardMBoczkowskiJPoderosoJMotterliniR 2007 Mitochondrial and cellular heme-dependent proteins as targets for the bioactive function of the heme oxygenase/carbon monoxide system. Antioxidants and Redox Signaling 21392155. (https://doi.org/10.1089/ars.2007.1803)

    • Search Google Scholar
    • Export Citation
  • DucklesHBoycottHEAl-OwaisMMEliesJJohnsonEDallasMLPorterKEGiuntiniFBoyleJPScraggJLet al. 2015 Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of T-type Ca 2 + channels. Pflugers Archiv 415427. (https://doi.org/10.1007/s00424-014-1503-5)

    • Search Google Scholar
    • Export Citation
  • DunnLLMidwinterRGNiJHamidHAParishCRStockerR 2014 New insights into intracellular locations and functions of heme Oxygenase-1. Antioxidants and Redox Signaling 17231742. (https://doi.org/10.1089/ars.2013.5675)

    • Search Google Scholar
    • Export Citation
  • FreemanDA 1987 Constitutive steroidogenesis in the R2C Leydig tumor cell line is maintained by the adenosine 3′,5′-cyclic monophosphate-independent production of a cycloheximide-sensitive factor that enhances mitochondrial pregnenolone biosynthesis. Endocrinology 124132. (https://doi.org/10.1210/endo-120-1-124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • JonesBLKearnsGL 2011 Histamine: new thoughts about a familiar mediator. Clinical Pharmacology and Therapeutics 189197. (https://doi.org/10.1038/clpt.2010.256)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • KhanUWRaiU 2007 Differential effects of histamine on Leydig cell and testicular macrophage activities in wall lizards: precise role of H1/H2 receptor subtypes. Journal of Endocrinology 441448. (https://doi.org/10.1677/JOE-06-0225)

    • Search Google Scholar
    • Export Citation
  • KozakowskaMPietraszek-GremplewiczKCieslaMSeczynskaMBronisz-BudzynskaIPodkalickaPBukowska-StrakovaKLobodaAJozkowiczADulakJ 2018 Lack of heme oxygenase-1 induces inflammatory reaction and proliferation of muscle satellite cells after cardiotoxin-induced skeletal muscle injury. American Journal of Pathology 491506. (https://doi.org/10.1016/j.ajpath.2017.10.017)

    • Search Google Scholar
    • Export Citation
  • KusmicCBarsantiCMatteucciMVesentiniNPelosiGAbrahamNGL’AbbateA 2014 Up-regulation of heme oxygenase-1 after infarct initiation reduces mortality, infarct size and left ventricular remodeling: experimental evidence and proof of concept. Journal of Translational Medicine 89. (https://doi.org/10.1186/1479-5876-12-89)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LeePJAlamJWiegandGWChoiAM 1996 Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. PNAS 1039310398. (https://doi.org/10.1073/pnas.93.19.10393)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LiWWuZQZhangSCaoRZhaoJSunZJZouW 2016 Augmented expression of gamma-glutamyl transferase 5 (GGT5) impairs testicular steroidogenesis by deregulating local oxidative stress. Cell and Tissue Research 467481. (https://doi.org/10.1007/s00441-016-2458-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LiJZhouQMaZWangMShenWJAzharSGuoZHuZ 2017 Feedback inhibition of CREB signaling by p38 MAPK contributes to the negative regulation of steroidogenesis. Reproductive Biology and Endocrinology 19. (https://doi.org/10.1186/s12958-017-0239-4)

    • Search Google Scholar
    • Export Citation
  • LiSFujinoMTakaharaTKangXK 2019 Protective role of heme oxygenase-1 in fatty liver ischemia – reperfusion injury. Medical Molecular Morphology 6172. (https://doi.org/10.1007/s00795-018-0205-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LobodaADamulewiczMPyzaEJozkowiczADulakJ 2016 Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences 32213247. (https://doi.org/10.1007/s00018-016-2223-0)

    • Search Google Scholar
    • Export Citation
  • MondilloCPatrignaniZRecheCRiveraEPignataroO 2005 Dual role of histamine in modulation of Leydig cell steroidogenesis via HRH1 and HRH2 receptor subtypes. Biology of Reproduction 899907. (https://doi.org/10.1095/biolreprod.105.041285)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • MondilloCFalusAPignataroOPapE 2007 Prolonged histamine deficiency in histidine decarboxylase gene knockout mice affects Leydig cell function. Journal of Andrology 8691. (https://doi.org/10.2164/jandrol.106.000257)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • MondilloCPagottoRMPiotrkowskiBRecheCGPatrignaniZJCymeryngCBPignataroOP 2009 Involvement of nitric oxide synthase in the mechanism of histamine-induced inhibition of Leydig cell steroidogenesis via histamine receptor subtypes in Sprague-Dawley rats. Biology of Reproduction 144152. (https://doi.org/10.1095/biolreprod.108.069484)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • PagottoRMMonzónCMorenoMBPignataroOPMondilloC 2012 Proliferative effect of histamine on MA-10 Leydig tumor cells mediated through HRH2 activation, transient elevation in cAMP production, and increased extracellular signal-regulated kinase phosphorylation levels. Biology of Reproduction 150. (https://doi.org/10.1095/biolreprod.112.102905)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • PagottoRMPereyraENMonzónCMondilloCPignataroOP 2014 Histamine inhibits adrenocortical cell proliferation but does not affect steroidogenesis. Journal of Endocrinology 1528. (https://doi.org/10.1530/JOE-13-0433)

    • Search Google Scholar
    • Export Citation
  • PayneAHHalesDB 2004 Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine Reviews 947970. (https://doi.org/10.1210/er.2003-0030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • PignataroOPAscoliM 1990a Epidermal growth factor increases the labeling of phosphatidylinositol 3,4-bisphosphate in MA-10 Leydig tumor cells. Journal of Biological Chemistry 17181723.

    • Search Google Scholar
    • Export Citation
  • PignataroOPAscoliM 1990b Studies with insulin and insulin-like growth factor-I show that the increased labeling of Phosphatidylinositol-3,4-bisphosphate is not sufficient to elicit the diverse actions of epidermal growth factor on MA-10 Leydig tumor cells. Molecular Endocrinology 758765. (https://doi.org/10.1210/mend-4-5-758)

    • Search Google Scholar
    • Export Citation
  • PiotrkowskiBMonzónCMPagottoRMRecheCGBesioMCymeryngCBPignataroOP 2009 Effects of heme oxygenase isozymes on Leydig cells steroidogenesis. Journal of Endocrinology 155165. (https://doi.org/10.1677/JOE-09-0061)

    • Search Google Scholar
    • Export Citation
  • PisoschiAMPopA 2015 The role of antioxidants in the chemistry of oxidative stress: a review. European Journal of Medicinal Chemistry 5574. (https://doi.org/10.1016/j.ejmech.2015.04.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • PomeraniecYGrionNGaddaLPannunzioVPodestaEJCymeryngCB 2004 Adrenocorticotropin induces heme oxygenase-1 expression in adrenal cells. Journal of Endocrinology 113124. (https://doi.org/10.1677/joe.0.1800113)

    • Search Google Scholar
    • Export Citation
  • RaoRMJoYBabb-TarboxMSyapinPJStoccoDM 2002 Regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of the cholesterol transfer proteins StAR and PBR. Endocrine Research 387394. (https://doi.org/10.1081/ERC-120016813)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • RochetteLCottinYZellerMVergelyC 2013 Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacology and Therapeutics 133152. (https://doi.org/10.1016/j.pharmthera.2012.09.007)

    • Search Google Scholar
    • Export Citation
  • RyterSWAlamJChoiAMK 2006 Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews 583650. (https://doi.org/10.1152/physrev.00011.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • SannaMDLucariniLDuranteMGhelardiniCMasiniEGaleottiN 2017 Histamine H4 receptor agonist-induced relief from painful peripheral neuropathy is mediated by inhibition of spinal neuroinflammation and oxidative stress. British Journal of Pharmacology 2840. (https://doi.org/10.1111/bph.13644)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • SeidelPGouletSHostettlerKTammMRothM 2010 DMF inhibits PDGF-BB induced airway smooth muscle cell proliferation through induction of heme-oxygenase-1. Respiratory Research 145. (https://doi.org/10.1186/1465-9921-11-145)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • SoaresMPBachFH 2009 Heme oxygenase-1: from biology to therapeutic potential. Trends in Molecular Medicine 5058. (https://doi.org/10.1016/j.molmed.2008.12.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • TuYPChuangSJChenSCLiuYHChenCFHourTC 2011 Simvastatin induces the expression of hemeoxygenase-1 against ischemia – reperfusion injury on the testes in rats. Toxicology Letters 242250. (https://doi.org/10.1016/j.toxlet.2011.09.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van VugtMATMYaffeMB 2010 Cell cycle re-entry mechanisms after DNA damage checkpoints: giving it some gas to shut off the breaks! Cell Cycle 20972101. (https://doi.org/10.4161/cc.9.11.11840)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • WagnerGLindroos-christensenJEinwallnerEHusaJZapfTCLippKRauscherSGrögerMSpittlerALoeweRet al. 2017 HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2. Scientific Reports 40881. (https://doi.org/10.1038/srep40881)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • WegielBNemethZCorrea-CostaMBulmerACOtterbeinLE 2014 Heme oxygenase-1: a metabolic nike. Antioxidants and Redox Signaling 17091722. (https://doi.org/10.1089/ars.2013.5667)

    • Search Google Scholar
    • Export Citation
  • YadavCHNajmiAKAkhtarMKhanamR 2015 Cardioprotective role of H3R agonist imetit on isoproterenol-induced hemodynamic changes and oxidative stress in rats. Toxicology Mechanisms and Methods 235240. (https://doi.org/10.3109/15376516.2014.997946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • YangSHLiPYuLHLiLLongMLiuMDHeJB 2019 Sulforaphane protect against cadmium-induced oxidative damage in mouse Leydigs cells by activating Nrf2/ARE signaling pathway. International Journal of Molecular Sciences 630. (https://doi.org/10.3390/ijms20030630)

    • Search Google Scholar
    • Export Citation
  • YeLLiXLiLChenHGeRS 2017 Insights into the development of the adult Leydig cell lineage from stem Leydig cells. Frontiers in Physiology 430. (https://doi.org/10.3389/fphys.2017.00430)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • YoshikawaTNaitoY 2002 What is oxidative stress? Japan Medical Association Journal 271276.

  • ZhaoYLiHXWangKYanBYLiW 2017 Regulation of testicular steroidogenesis by Foxa3 via transcriptional modulation of ER a signaling in type 2 diabetes mellitus (T2DM). Biochemical and Biophysical Research Communications 786793. (https://doi.org/10.1016/j.bbrc.2017.06.118)

    • Search Google Scholar
    • Export Citation
  • ZieherLMDebeljukLIturrizaFManciniRE 1971 Biogenic amine concentration in testes of rats at different ages. Endocrinology 351354. (https://doi.org/10.1210/endo-88-2-351)

    • PubMed
    • Search Google Scholar
    • Export Citation