The role of fetal parathyroid hormone-related protein in transplacental calcium transport

in Journal of Molecular Endocrinology
Authors:
J Tucci
Search for other papers by J Tucci in
Current site
Google Scholar
PubMed
Close
,
V Hammond
Search for other papers by V Hammond in
Current site
Google Scholar
PubMed
Close
,
P V Senior
Search for other papers by P V Senior in
Current site
Google Scholar
PubMed
Close
,
A Gibson
Search for other papers by A Gibson in
Current site
Google Scholar
PubMed
Close
, and
F Beck
Search for other papers by F Beck in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

USD  $1.00
USD  $1.00

ABSTRACT

During pregnancy, a placental calcium pump maintains the fetus in a hypercalcaemic state relative to the mother, a condition which has been thought to facilitate normal development of the fetal skeleton. Based on experiments performed in the sheep, parathyroid hormone-related protein (PTHrP) has been implicated as the hormone responsible for maintaining the placental calcium pump. In the present study on mice in which the PTHrP gene has been ablated by homologous recombination, we have measured both fetal and maternal circulating total and ionised calcium levels, as well as fetal total body calcium, in order to determine whether absence of PTHrP during fetal development has an effect on fetal calcium levels. Our results show that, in fetuses lacking PTHrP, circulating ionised calcium levels are significantly lower than those of heterozygote and wild-type littermates, but circulating total calcium levels show no difference. Total body calcium levels of null mutants are significantly higher than those of normal littermates.

The role of PTHrP in maintaining the integrity of the transplacental calcium pump in the rodent thus remains unclear. It may be that the lower levels of fetal blood ionised calcium in mutant animals are due to disruption of the placental pump, but, if this is the case, compensatory mechanisms have operated to allow the excessive calcium deposition seen in the skeletons of these animals. Alternatively, the increased avidity of the bones for calcium may in itself have produced a lower equilibrium level of available ionised calcium.

 

  • Collapse
  • Expand