Understanding of the principal pathways of steroid hormone biosynthesis was established over two decades ago through advances in steroid radioisotopic and chromatographic techniques. When the enzymes of individual pathways could be examined in more detail, the dissection of the complex pattern of enzyme activities began. At many points, separate pathways employ precisely the same enzyme for equivalent catalytic steps, e.g. for 21-hydroxylase, 11 β-hydroxylase, aromatase and several dehydrogenases (Orth et al. 1992). A further economy was found for 17α-hydroxylase and 17,20-lyase activities, which co-purify with the same P450c17 polypeptide. This enzyme was later cloned and expressed in tissue culture cells, revealing that, contrary to the enzyme in rat, human and cattle, 17α-hydroxylase cannot convert 17α-hydroxyprogesterone to androstenedione (Bradshaw et al. 1987, Fevold et al. 1989). Further complexity emerged with the existence of multiple tissue-specific forms of 5α-reductase (Wilson et al. 1993), and 3β-, 11β- and 17β-hydroxysteroid dehydrogenases, most of which
Journal of Molecular Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 0 | 0 | 0 |
PDF Downloads | 2 | 2 | 0 |