Many peptide precursors encode more than one bioactive peptide. Recent cloning of the rat neuromedin U (NmU) precursor revealed potential proteolytic processing sites which may generate three associated peptides in addition to the NmU peptide, which is known to have potent uterine contractile effects. To assess the degree of evolutionary conservation, which often suggests conserved biological function and hence physiological importance, we have cloned and sequenced the cDNA encoding the human NmU precursor. Sequence analysis revealed a 174 amino acid human precursor containing the 25 residue NmU peptide near the C terminus of the precursor. The human message sequence was 74% homologous with that of the rat, indicating evolutionary conservation of the precursor between these two species. Four out of five of the putative proteolytic processing sites, first revealed in the rat precursor, were conserved in the human precursor, indicating a similar processing mechanism in both species. Two such processing sites flank a 33 residue peptide sequence which differed in only two amino acids compared with the rat homologue. This conservation suggests a possible biological role for this putative peptide.
Northern blot analysis of human gastrointestinal tissues revealed a similar level of mRNA throughout the gastrointestinal tract. RIA using a porcine specific assay showed the highest levels of peptide in the jejunum samples.
Journal of Molecular Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 2 | 2 | 0 |
PDF Downloads | 2 | 2 | 0 |