In this study we have demonstrated that specific binding sites for 3,5-di-iodo-l-thyronine (3,5-T2) can be detected in rat liver mitochondria. After incubation with the homogenate, liver mitochondria bound only a small portion of [3,5-125I]T2. The addition of a 100-fold excess of unlabelled 3,5-T2 caused the displacement of on average 50-60% of the [3,5-125I]T2 bound. Specific binding of 3,5-T2 to rat liver mitochondria occurred rapidly; a maximum was achieved after 5 min. Maximal binding was obtained at 37 °C, while at 0 °C and 20 °C the values were only slightly lower. Binding was maximal at pH 70; mean (±s.e.m.) values for the apparent association constant and the binding capacity (calculated at pH 7·0, 0 °C and after 30min of incubation) were 0·5±0·04×108 m -1 and 0·4±0·04 pmol/mg mitochondrial protein respectively. The specificity of binding, examined in competition studies, followed the order: 3,5-T2>3,3′-di-iodo-l-thyronine>3′,3,5-tri-iodo-l-thyronine>thyroxine. Other iodothyronines (3′,5′-di-iodo-l-thyronine, 3,5-di-iodo-d-thyronine, 3,3′, 5′-tri-iodo-l-thyronine, 3-iodo-l-thyronine and 3,5-di-iodothyroacetic acid) showed little or no competition. This suggests that the specific 3,5-T2 binding sites could be of biological relevance with respect to the understanding of the mechanism of physiological action of thyroid hormones at the cellular level.
Journal of Molecular Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 0 | 0 | 0 |
PDF Downloads | 1 | 1 | 0 |