Effect of in vivo oestradiol treatment on cell-free transcription in trout liver nuclear extracts

in Journal of Molecular Endocrinology
View More View Less
Restricted access

USD  $0.00
USD  $0.00

ABSTRACT

In order to perform later studies on the transcriptional regulation of hormone-dependent genes in fish liver, we firstly examined the potential of trout liver nuclear extracts in a cell-free transcription system. As reporter genes, we used DNA sequences without G (G-free cassettes) under the control of three promoters derived from the 5′ flanking sequence of the Xenopus vitellogenin B1 gene; two of them were responsive to the oestrogen receptor (ER) through oestrogen responsive elements (ERE). Maximal transcriptional activity was obtained within a range of 40–130 μg protein per extract depending on the extract preparation. Transcription was maximal in reactions carried out at 25 °C.

Similar transcriptional activities for the three promoters were observed when transcription was performed in extracts from untreated male trout. In contrast, we observed a 4·5- to 6-fold increase in the transcription with ERE-containing promoters in comparison with that with the minimal promoter bearing only a TATA box when extracts from oestradiol-treated male trout were used. This effect was correlated with the increase in the nuclear ER concentration induced by in vivo hormonal treatment. This enhanced transcription was specifically inhibited by the addition of a 25- to 100-fold excess of ERE oligonucleotide competitor.

These data demonstrated, therefore, that transcription was ERE-dependent in this system and suggest strongly that it was mediated by the trout ER. Addition of oestradiol or the anti-oestrogens hydroxytamoxifen or ICI 164384 had no effect on the transcriptional activity of the two ERE-containing promoters, indicating that transcription was hormone-independent in trout liver nuclear extracts.

 

Society for Endocrinology logo

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 12 12 12
Full Text Views 0 0 0
PDF Downloads 0 0 0