Although insulins and structurally related peptides are found in vertebrates as well as in invertebrates, it is not clear whether the genes encoding these hormones have emerged from a single ancestral (insulin)-type of gene or, alternatively, have arisen independently through convergent evolution from different types of gene. To investigate this issue, we cloned the gene encoding the molluscan insulin-related peptide III (MIP III) from the freshwater snail, Lymnaea stagnalis. The predicted MIP III preprohormone had the overall organization of preproinsulin, with a signal peptide and A and B chains, connected by two putative C peptides. Although MIP III was found to share key features with vertebrate insulins, it also had unique structural characteristics in common with the previously identified MIPs I and II, thus forming a distinct class of MIP peptides within the insulin superfamily. MIP III is synthesized in neurones in the brain. It is encoded by a gene with the overall organization of the vertebrate insulin genes, with three exons and two introns, of which the second intron interrupts the coding region of the C peptides. Our data therefore demonstrate that in the Archaemetazoa, the common ancestor of the vertebrates and invertebrates, a primordial peptide with a two-chain insulin configuration encoded by a primordial insulin-type gene must have been present.
Journal of Molecular Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 3 | 3 | 2 |
PDF Downloads | 3 | 3 | 1 |